About this document

Follow the instructions in this manual carefully to ensure safe and long-lasting use of the projector.

Symbols used in this document

Many pages in this document have a dedicated area for notes. The information in that area is accompanied by the following symbols:

⚠️ WARNING: this symbol indicates that there is a danger of physical injury to yourself and/or damage to the equipment unless the instructions are closely followed.

⚡️ ELECTRICAL WARNING: this symbol indicates that there is a danger of electrical shock unless the instructions are closely followed.

📣 LASER WARNING: this symbol indicates that there is a potential hazard of eye exposure to laser radiation unless the instructions are closely followed.

🚀 NOTE: this symbol indicates that there is some important information that you should read.

Product revision

Because we at Digital Projection continually strive to improve our products, we may change specifications and designs, and add new features without prior notice.

Updates may be available online. Please visit the Digital Projection website for all latest documents.

Legal notice

Trademarks and trade names mentioned in this document remain the property of their respective owners. Digital Projection disclaims any proprietary interest in trademarks and trade names other than its own.

Copyright © 2019 Digital Projection Ltd. All rights reserved.
Laser information

Caution - use of controls or adjustments or performance of procedures other than those specified herein may result in hazardous radiation exposure.

Not for home use.

Optical radiation

Caution - possibly hazardous optical radiation emitted from this product. Do not stare at operating light source. May be harmful to eyes. This projector is tested according to IEC/EN62471-5:2015 (Photobiological safety of lamps and lamp systems – Part 5: Image projectors standard) and is Risk Group 3 (high risk).
Light Hazard Warning

The hazard distance is the distance measured from the projection lens at which the intensity or energy per unit of surface is lower than the applicable exposure limit on the cornea or skin. If the person is within the hazard distance, the beam is considered unsafe for exposure.

Light Hazard Distances

The hazard distance for this projector is 6.5 m.

Notes

No direct exposure to the beam is permitted, RG3 IEC 62471-5:2015.

Operators should control access to the beam within the hazard distance or install the projector at sufficient height to prevent exposures of spectators’ eyes within the hazard distance.
Introduction

Congratulations on your purchase of this Digital Projection product. Your projector has the following key features:

- WUXGA projector.
- WUXGA native resolution delivering 21,000 ISO lumens.
- Support for Frame Sequential and Dual Pipe 3D formats.
- HDBaseT® for transmission of uncompressed High Definition Video up to 100 m from the source.
- 3G-SDI with loop-through.
- Edge Blend with black level correction.
- Red laser assist for enhanced color fidelity.
- Blanking control for custom input window sizing.
- Cornerstone, Vertical & Horizontal Keystone, Pincushion & Barrel, and Image Rotation.
- Control via LAN and RS232.
- Motorised lens mount.
- Separate control of screen and source aspect ratio.
- Non-linear warp for irregular projection surfaces.
- Constant brightness mode maintains light output at selected levels.

A serial number is located on the side of the projector. Record it here:
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About this document</td>
<td>2</td>
</tr>
<tr>
<td>Symbols used in this document</td>
<td>2</td>
</tr>
<tr>
<td>Product revision</td>
<td>2</td>
</tr>
<tr>
<td>Legal notice</td>
<td>2</td>
</tr>
<tr>
<td>Laser information</td>
<td>3</td>
</tr>
<tr>
<td>Optical radiation</td>
<td>3</td>
</tr>
<tr>
<td>Light Hazard Warning</td>
<td>4</td>
</tr>
<tr>
<td>Light Hazard Distances</td>
<td>4</td>
</tr>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>Contents</td>
<td>6</td>
</tr>
<tr>
<td>What's in the box?</td>
<td>10</td>
</tr>
<tr>
<td>Connecting the power supply</td>
<td>11</td>
</tr>
<tr>
<td>Projector overview</td>
<td>12</td>
</tr>
<tr>
<td>Control panel</td>
<td>13</td>
</tr>
<tr>
<td>Remote control</td>
<td>14</td>
</tr>
<tr>
<td>Infrared reception</td>
<td>17</td>
</tr>
<tr>
<td>Positioning the screen and projector</td>
<td>18</td>
</tr>
<tr>
<td>Roll and pitch</td>
<td>19</td>
</tr>
<tr>
<td>Stacking and rigging</td>
<td>20</td>
</tr>
<tr>
<td>Pin and cup stacking</td>
<td>20</td>
</tr>
<tr>
<td>Changing the lens</td>
<td>22</td>
</tr>
<tr>
<td>Inserting a new lens</td>
<td>22</td>
</tr>
<tr>
<td>Removing the lens</td>
<td>23</td>
</tr>
<tr>
<td>Fitting a lens hood</td>
<td>24</td>
</tr>
<tr>
<td>Operating the projector</td>
<td>25</td>
</tr>
<tr>
<td>Switching the projector on</td>
<td>25</td>
</tr>
<tr>
<td>Switching the projector off</td>
<td>25</td>
</tr>
<tr>
<td>Selecting an input signal</td>
<td>25</td>
</tr>
<tr>
<td>Selecting a test pattern</td>
<td>25</td>
</tr>
<tr>
<td>Adjusting the lens</td>
<td>26</td>
</tr>
<tr>
<td>Lens menu</td>
<td>26</td>
</tr>
<tr>
<td>Remote control</td>
<td>26</td>
</tr>
<tr>
<td>Adjusting the image</td>
<td>26</td>
</tr>
<tr>
<td>Orientation</td>
<td>26</td>
</tr>
<tr>
<td>Geometry</td>
<td>26</td>
</tr>
<tr>
<td>Picture</td>
<td>26</td>
</tr>
<tr>
<td>Signal inputs</td>
<td>28</td>
</tr>
<tr>
<td>Digital inputs and outputs</td>
<td>28</td>
</tr>
<tr>
<td>EDID on the DisplayPort, HDMI, and HDBaseT inputs</td>
<td>29</td>
</tr>
<tr>
<td>Using DisplayPort/ HDMI/ HDBaseT switchers with the projector</td>
<td>29</td>
</tr>
<tr>
<td>3D connections</td>
<td>30</td>
</tr>
<tr>
<td>Frame sequential 1080p 3D up to 120Hz and WUXGA 3D at 100Hz</td>
<td>30</td>
</tr>
<tr>
<td>Dual Pipe 1080p, WUXGA and WQXGA+ 3D sources at up to 100 and 120Hz</td>
<td>30</td>
</tr>
<tr>
<td>3D Sync</td>
<td>31</td>
</tr>
<tr>
<td>Control connections</td>
<td>32</td>
</tr>
<tr>
<td>LAN connection examples</td>
<td>33</td>
</tr>
<tr>
<td>RS232 connection example</td>
<td>34</td>
</tr>
<tr>
<td>Using the menus</td>
<td>36</td>
</tr>
<tr>
<td>Opening the Menu</td>
<td>36</td>
</tr>
<tr>
<td>Opening a submenu</td>
<td>36</td>
</tr>
<tr>
<td>Exiting menus and closing the OSD</td>
<td>37</td>
</tr>
</tbody>
</table>
Contents

Measured data/target data ... 79
Power on/off Management/Power on/off 80
Clock Adjust ... 81
OSD Settings .. 81
Memory .. 82
EDID Mode .. 82
Network .. 83
PIP ... 84
Information .. 85
Signal Format .. 85
System Status .. 86
Thermal Status ... 86
Factory Reset .. 87
Served web pages .. 88
Choosing a lens ... 90
Basic calculation ... 91
Basic calculation example ... 92
Full lens calculation ... 93
Introducing TRC .. 93
Calculating TRC .. 94
TRC table .. 94
Calculating the throw ratio with TRC 94
Full lens calculation example 95
Screen requirements ... 96
Fitting the image to the display 96
WUXGA images displayed full width 96
WUXGA images displayed with a height of 1200 pixels 96
WUXGA images displayed full height 97
Diagonal screen sizes .. 97
Positioning the image .. 98
Aspect ratios explained ... 100
Aspect ratios examples ... 100
Source: 4:3 ... 100
Source: 16:9 .. 101
Source: 16:10 (native) .. 101
Aspect ratio example: TheatreScope 102
Appendix A: supported signal input modes 103
2D formats ... 103
3D formats ... 105
Appendix B: wiring details ... 107
Signal inputs and outputs .. 107
HDMI 1 and 2 .. 107
DisplayPort ... 108
3G-SDI in, 3G-SDI out .. 109
HDBaseT input .. 109
Control connections .. 110
LAN ... 110
RS232 ... 110
IR input .. 110
Appendix C: glossary of terms .. 111
What's in the box?

Make sure your box contains everything listed. If any pieces are missing, contact your dealer.

Only one remote is supplied with the projector.

Save and store the original box and packing materials, in case you ever need to ship your projector.

The projector is shipped without a lens.

Only the appropriate cable for destination territory is supplied with the projector.
Connecting the power supply

1. Lift the cable lock up
2. Firmly push the mains connector into the socket
3. Push the lock down to secure the cable

Notes

- Use only the power cable provided.
- Ensure that the power outlet includes a ground connection as this equipment MUST be earthed.
- Handle the power cable carefully and avoid sharp bends. Do not use a damaged power cable.
- Light output power is reduced by approx 35% when operating on 110V.
Projector overview

1. Connections panel
2. Control panel
3. Indicators
4. Lens mount
5. Front infrared window
6. Lifting handles
7. Mains socket and switch
8. Air inlet
Control panel

1. **POWER**
 Switches the projector on and off (STANDBY).

2. **INPUT**
 Switches to the next input source.

3. **AUTO SYNC**
 Re-synchronises with the current input signal.

4. **ASPECT**
 Changes the aspect ratio.

5. **CENTER LENS**
 Centers the lens.

6. **PIC MUTE**
 Shows and hides the projected image. When muted, the light source is completely switched off and the screen is black.

7. **MENU**
 Displays and exits the OSD.

8. **Arrow buttons & ENTER**
 Navigation buttons used to highlight menu entries in the OSD. Press ENTER to open or execute the highlighted menu entry.

9. **EXIT**
 Exits the current OSD page and enters the level above.

10. **LENS SHIFT**
 Arrow buttons move the lens in the specified direction.

11. **FOCUS**
 Plus and minus buttons move the focus in and out.

12. **ZOOM**
 Plus and minus buttons zoom in and out.
Remote control

1. **Power ON / OFF**
 Turns power on and off.

2. **Pic Mute OPEN / CLOSE**
 Shows and hides the projected image.
 There are two PIC Mute settings:
 - Laser. When off, the laser is switched off and no image is projected
 - DMD Blanking. When off, the laser remains on and a black image is projected

3. **OSD ON / OFF**
 Enable and disable screen timeout messages and control whether to show the OSD during projection.

4. **MENU**
 Access the OSD. If the OSD is open, press this button to go back to the previous menu.

5. **Navigation (arrows and OK)**
 Navigate through the menus with the arrows, confirm your choice with **OK**.
 In lens adjustment modes, the arrows are used to move, zoom or focus the lens.
 See 11 below. In lens adjustment modes, or when the OSD is not showing, the OK button switches between modes: **Shift Adjustment** and **Zoom / Focus Adjustment**.

6. **EXIT**
 Go up one level in the OSD. When the top level is reached, press to close the OSD.

7. **FREEZE**
 Freeze the current frame.

8. **DEFAULT**
 When editing a parameter, press this button to restore the default value.

9. **INFO**
 Access information about the projector.

10. **RE-SYNC**
 Re-synchronise with the current input signal.
11. **LENS adjustment**
 - **FOCUS IN / OUT**: adjust focus.
 - **SHIFT**: press and hold this button, then use the Navigation arrow buttons to move the lens.
 - **ZOOM IN / OUT**: adjust zoom.

12. **USER PRESET A, B, C, D**
 Load user presets.

13. **ALT**
 Press and hold this button to access alternative functions for all buttons with a green label.

14. **DVI / DisplayPort2 / numeric input 3**
 There is no DVI input on this projector.
 Use with **ALT** to select the DisplayPort 2 input.

15. **HDMI 2 / HDMI 4 / numeric input 2**
 Select the HDMI 2 input.
 There is no HDMI 4 input on this projector.

16. **HDMI 1 / HDMI 3 / numeric input 1**
 Select the HDMI 1 input.
 There is no HDMI input on this projector.

Notes

This projector does not use the following options on the remote: DVI, VGA, COMP 1 and COMP 2.
17. **DISPLAYPORT 1 / R / numeric input 4**
 Select DisplayPort 1 input.

18. **HD-T / G / numeric input 5**
 Select the HDBaseT input.

19. **VGA / 3D / numeric input 7**
 There is no VGA input on this projector.
 Use with **ALT** to toggle the 3D Format setting between Off and Auto.

20. **COMP1 / EYE / numeric input 8**
 There is no Component 1 input on this projector.
 Use with **ALT** to switch between left and right eye 3D dominance.

21. **ADDR / ALL (with red indicator at the top)**
 Assign and unassign an IR remote address.
 - **To assign an IR remote address:**
 1. Press and hold this button until the red indicator starts flashing.
 2. Release this button and while the red indicator is still flashing, enter a two-digit address using the numeric input buttons. The indicator will flash three times quickly to confirm the change.
 - **To unassign an address and return to the default address 00:**
 1. Press and hold **ALT** and this button simultaneously until the red indicator flashes to confirm the change.

22. **3GSDI / B / numeric input 6**
 Select the 3G-SDI input.

23. **TEST / SWAP / numeric input 0**
 Show a test pattern. Press again to show the next test pattern: White, Black, Red, Green, Blue, Checkerboard, Crosshatch, V Burst, H Burst, Color Bar, Off.
 When PIP mode is on, use this button with **ALT** to swap the main and sub images.

24. **COMP2 / PIP / numeric input 9**
 There is no Component 2 input on this projector.
 Use with **ALT** to switch on Picture In Picture (PIP) mode.
Infrared reception

The projector has infrared sensors at the front and back.

The angle of acceptance is 40°. Make sure that the remote control is within the angle of acceptance when trying to control the projector.
Positioning the screen and projector

1. Install the screen, ensuring that it is in the best position for viewing by your audience.

2. Mount the projector, ensuring that it is at a suitable distance from the screen for the image to fill the screen. Set the adjustable feet so that the projector is level, and perpendicular to the screen.

The drawing shows the positions of the feet for table mounting, and the fixing holes for ceiling mounting.

1. Four adjustable feet
2. Six M6 holes for ceiling mount. The screws should not penetrate more than 15 mm into the body of the projector.

Notes

Always allow the projector to cool for 5 minutes before disconnecting the power or moving the projector.

Ensure that there is at least 50 cm (19.7 in) of space between the ventilation outlets and any wall, and 30 cm (11.8 in) on all other sides.

Do not use the threaded holes for the adjustable feet to hang or mount the projector.
Roll and pitch
The projector can be operated in numerous positions.

Positioning the screen and projector

Roll

Pitch

Notes
Positioning the projector with the lens facing down or the inputs facing up may reduce motor life.
Stacking and rigging

Pin and cup stacking

1. Remove the six screws on the top side of the projector that will be on the bottom of the stack.
2. Insert and secure the stacking tops in place of the removed screws.

Notes

- The projectors must be in a vertical position when they are stacked. This will ensure that the stresses are distributed to all four corners of the chassis.
- Do not use the threaded holes for the adjustable feet to hang or mount the projector.
- Do not use the carry handles to hang or mount the projector.
- Do not stack more than two projectors.
- Do not use the provided eye bolts to suspend stacked projectors. The eye bolts can only carry the weight of one projector.
- Use only the provided screws with a torque of 25-30 kgf cm (2.45 - 2.94 Nm).
- It is the customer’s responsibility to ensure that the assembly is carried out securely.
3. Remove the adjustable feet from the projector that will be stacked on the top.
4. Mount the projector on top of the other projector. Ensure that all four cups are placed over the pins on the bottom projector.
5. Use the provided holding pins to secure each connection.
Changing the lens

Inserting a new lens

1. Remove the front and rear lens caps
2. Insert the lens with the connector in upright position.

Notes

- Before changing the lens, always make sure the projector is switched off and fully disconnected from its power supply.
- When changing the lens, avoid using excessive force as this may damage the equipment.
- Avoid touching the surface of the lens as this may result in image impairment.
- The lens is shipped separately.
- Take care to preserve the original lens packaging and protective caps for future use.
- The projector will not power on without the lens fitted.
3. Rotate the lens clockwise until it clicks into place.

Removing the lens
1. Push the lens release button all the way in
2. Turn the lens anti-clockwise until it disengages
3. Slowly remove the lens.
Fitting a lens hood

1. Push-fit the lens hood onto the lens.

Notes

FDA regulations require that a lens hood is permanently fitted when using the 4.00 - 7.00 : 1 zoom lens with the M-Vision Laser range of projectors in the United States of America. Fitting can be provided by your reseller or System Integrator.
Operating the projector

Switching the projector on

1. Ensure a lens is fitted. Connect the power cable between the mains supply and the projector. (See Connecting the power supply above.) Switch on at the switch next to the power connector.

2. The **POWER** indicator lights red to signal that the projector is in STANDBY mode. Press one of the following buttons:
 - On the remote control, the **ON** button
 - On the projector control panel, the **POWER** button.

The fans begin working, then the **POWER** indicator begins flashing green. When the flashing stops, the **POWER** and **LIGHT** indicators both light steady green. The projector is switched on.

Switching the projector off

1. Press **OFF** on the remote control or **POWER** on the control panel, then press again to confirm your choice.
 - The **POWER** indicator on the control panel will start flashing amber, the system will go out and the cooling fans will run for a short time until the **POWER** indicator goes steady red to indicate that the projector has entered STANDBY mode.

2. If you need to switch the projector off completely, switch off at the mains power switch next to the power connector and then disconnect the power cable from the projector.

Selecting an input signal

1. Connect one or more image sources to the projector.

2. Select the input you want to display:
 - Press one of the input buttons on the remote control.
 - Alternatively, open the On-screen display (OSD) by pressing **MENU**. Highlight **Input** from the main menu, press **ENTER/OK** and then select an input signal using the **UP** and **DOWN** arrow buttons. Press **ENTER/OK** to confirm your choice.

Selecting a test pattern

To display a test pattern:

- Press **TEST** on the remote control.
 Change the test pattern using the **LEFT** and **RIGHT** arrow buttons. The following test patterns are available: **White**, **Black**, **Red**, **Green**, **Blue**, **Checkerboard**, **Crosshatch**, **V Burst**, **H Burst**, **Color Bar**, **Off**.

- Alternatively, open the OSD by pressing **MENU**. Highlight **Test Patterns** from the main menu, then select a test pattern using the **LEFT** and **RIGHT** arrow buttons.

After the final test pattern, the projector exits test pattern mode and returns to the main image. To view test patterns again, you need to press **TEST** again. If you wish to exit the test patterns before you reach the final one, press **TEST** or **EXIT** at any time.
Adjusting the lens

The lens can be adjusted using the Lens menu, or using the lens buttons on the remote control.

Lens menu

The Lens menu provides access to the Lens Control setting and the Lens Center command.

Lens Control allows Zoom, Focus and Shift adjustments using the arrow buttons. The setting operates in Zoom/Focus Adjustment and Shift Adjustment mode.

Press ENTER/SELECT to switch between the two modes.

Remote control

Use the remote control to adjust zoom, focus and shift directly, without opening a menu:

- OK enters lens control, then switches between Zoom/Focus Adjustment and Shift Adjustment.
- EXIT exits lens control and opens the Lens menu.
- MENU exits lens control and returns to the main image.
- The arrow buttons adjust zoom, focus and shift as indicated on the screen.

Adjusting the image

Orientation

This can be set from the Setup menu.

Highlight Orientation and choose from Front Tabletop, Front Ceiling, Rear Tabletop, Rear Ceiling and Auto-front.

Geometry

Settings such as Keystone, Rotation, Pincushion / Barrel and Arc can be set from the Geometry menu.

Picture

Settings such as Gamma, Brightness, Contrast, Saturation, Hue and Sharpness can be set from the Image menu.
Signal inputs

Digital inputs and outputs

1. **HDBaseT**
 Receives digital signal from HDBaseT-compliant devices. Connect an HDBaseT cable.

2. **HDMI 1**
 HDMI 1.4b input supporting **Frame Sequential** and **Dual Pipe** 3D with HDCP 1.4. Also supports the domestic Blu-Ray formats. See supported signal input modes on page 103. Connect an **HDMI** cable to the connector.

3. **DisplayPort 1**
 DisplayPort 1.1a input. Connect a DisplayPort cable to the connector. Supports sources up to 1920 x 1200 resolution at 24 - 60 Hz. Supports HDCP.

4. **DisplayPort 2**
 DisplayPort 1.1a input. Connect a DisplayPort cable to the connector. Supports sources up to 1920 x 1200 resolution at 24 - 60 Hz. Supports HDCP.

5. **3G-SDI in**

6. **3G-SDI out**
 Connect a 3G-SDI cable to distribute the 3G-SDI signal to another projector.

7. **HDMI 2**
 HDMI 1.4b input supporting **Frame Sequential** and **Dual Pipe** 3D with HDCP 1.4. Also supports the domestic Blu-Ray formats. See supported signal input modes on page 103. Connect an **HDMI** cable to the connector.

Notes
For simultaneous HDBaseT and LAN connectivity, a third-party distribution product can be utilised to combine HDBaseT video stream with LAN connection for delivery to the projector.
EDID on the DisplayPort, HDMI, and HDBaseT inputs

If you are using a computer graphics card or another source that obeys the EDID protocol, the source will automatically configure itself to suit the capability of the projector.

Otherwise refer to the documentation supplied with the source to manually set the resolution to the DMD™ resolution of the projector or the nearest suitable setting. Switch off the source, connect to the projector, then switch the source back on again.

Using DisplayPort/ HDMI/ HDBaseT switchers with the projector

When using a DisplayPort/HDMI/HDBaseT source switcher with the projector, it is important to set the switcher so that it passes the projector EDID through to the source devices.

If this is not done, the projector may not be able to lock to the source or display the source correctly as its video output timings may not be compatible with those of the projector. Sometimes this is called transparent, pass-through or clone mode. See your switcher’s manual for information on how to set this mode.

The EDIDs in the switcher should be the same as the one in the projector.
3D connections

1. **HDMI 1 / Dual Pipe Left**
 - HDMI 1.4b input supporting **Frame Sequential** and **Dual Pipe** 3D with HDCP 1.4. Also supports the domestic Blu-Ray formats. See supported signal input modes on page 103. Connect an HDMI cable to the connector.

2. **DisplayPort 1**
 - DisplayPort 1.1a input supporting **Frame Sequential**
 - 3D source up to 120Hz. Connect a DisplayPort cable to the connector.

3. **DisplayPort 2**
 - DisplayPort 1.1a input supporting **Frame Sequential**
 - 3D source up to 120Hz. Connect a DisplayPort cable to the connector.

4. **HDMI 2 / Dual Pipe Right**
 - HDMI 1.4b input supporting **Frame Sequential** and **Dual Pipe** 3D with HDCP 1.4. Also supports the domestic Blu-Ray formats. See supported signal input modes on page 103. Connect an HDMI cable to the connector.

5. **Sync In / Sync Out**
 - Sync In is the 3D sync input signal. Connect the 3D sync from your graphics card or server.
 - Sync Out is the 3D sync output signal. This is affected by settings in the 3D menu such as Dark Time and 3D Sync Offset. Connect this to an IR emitter or ZScreen.

Frame sequential 1080p 3D up to 120Hz and WUXGA 3D at 100Hz

1. Connect to a DisplayPort input
2. Set **3D Format** in the 3D menu to **Frame Sequential**.

Dual Pipe 1080p, WUXGA and WQXGA+ 3D sources at up to 100 and 120Hz

1. Connect the left eye output to the HDMI 1 socket and the right eye output to the HDMI 2 socket.
2. Set **3D Format** in the 3D menu to **Dual Pipe**.
3D Sync

1. 3D Input
2. 3D Sync In
3. 3D Sync Out
4. IR emitter or Zscreen
Control connections

1. Trigger 1 & Trigger 2
 The Trigger outputs are defined in the Setup menu. Each output can be triggered by one of the following conditions:
 - **Screen trigger.** A trigger output can be used to control an electrically operated screen. The screen will be automatically deployed when the projector starts up and retracted when the projector shuts down.
 - **Aspect ratio trigger.** A trigger output can be used to control screen shuttering for different aspect ratios.
 - **RS232 trigger.** A trigger output can be used to control the screen or screen shuttering on receipt of an RS232 command.

2. RS232
 All of the projector’s features can be controlled via a serial connection, using commands described in the Protocol Guide. Use a straight-through cable to connect directly to a computer.

3. Wired Remote
 The remote control can be connected using a standard 3.5 mm mini jack cable (tip-ring-sleeve, or TRS).

4. HDBaseT/LAN
 The projector’s features can be controlled via a LAN connection, using Digital Projection’s Projector Controller application or a terminal-emulation program.

5. LAN
 The projector’s features can be controlled via a LAN connection, using Digital Projection’s Projector Controller application or a terminal-emulation program.

Notes

For a list of all commands used to control the projector via LAN, see the Protocol Guide (available separately).

Only one remote connection (RS232 or LAN) should be used at any one time.

With a LAN connection the projector can serve a web page offering status and projector controls.

Projector Controller is available for download, free of charge, from the Digital Projection website.
LAN connection examples
The projector’s features can be controlled via a LAN connection, using Digital Projection’s Projector Controller application or a terminal emulation program.

Notes
With a LAN connection the projector can serve a web page offering basic projector controls.

Projector Controller is available for download, free of charge, from the Digital Projection website.

For simultaneous HDBaseT and LAN connectivity, a third-party distribution product can be utilised to combine HDBaseT video stream with LAN connection for delivery to the projector.
RS232 connection example

All of the projector’s features can be controlled via a serial connection, using commands described in the Protocol Guide.

Computer to Projector

Notes

The Protocol Guide is available separately
Using the menus

Opening the Menu

Access the various menus using either the projector control panel or the remote control. On either device:

1. Press the **MENU** button. The on-screen display (OSD) opens showing the list of available menus.

![Projector control panel](image)

Opening a submenu

Move up and down the list using the **UP** and **DOWN** arrow buttons.

To open a submenu:

1. Press **ENTER** on the control panel or **OK** on the remote control.

This guide refers to the above two buttons as **ENTER/OK**.
Exiting menus and closing the OSD

To go back to the previous page:

1. Press EXIT.

To close the OSD:

1. Press MENU.

Or:

1. Go back to the top level menu
2. Press EXIT.

Inside a menu

When you open a menu, the page consists of the following elements:

- Title bar at the top shows which menu you have accessed.
- Highlighted item
- Available and unavailable items
- Unavailable items appear a pale gray color. Whether an item is available may depend on other settings.
- The text or symbol to the right of an item shows whether the item:
 - has a value that can be changed (the current value is shown)
 - opens a sub-menu (an arrow button is displayed)
 - executes a command (the space to the right of the item is blank).

Menu Name

<table>
<thead>
<tr>
<th>Highlighted Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Item</td>
<td>Value</td>
</tr>
<tr>
<td>Unavailable Item</td>
<td>Value</td>
</tr>
<tr>
<td>Slider</td>
<td>Value</td>
</tr>
<tr>
<td>Sub-menu</td>
<td></td>
</tr>
<tr>
<td>Command</td>
<td></td>
</tr>
</tbody>
</table>
Accessing sub menus

Use the **UP** and **DOWN** arrow buttons to highlight the sub-menu, then press **ENTER/OK**.

Executing commands

If the item contains a command, highlighting it reveals an **OK** button.

Press **ENTER/OK** to execute the highlighted command.

You may be asked for confirmation. Use the **ENTER/OK** to confirm, or **EXIT** to cancel.

<table>
<thead>
<tr>
<th>Menu Name</th>
<th>Command Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menu Item</td>
<td>Warning</td>
</tr>
<tr>
<td>Value</td>
<td>All [Menu] values will be lost.</td>
</tr>
<tr>
<td>Highlighted Command</td>
<td>Press OK to confirm</td>
</tr>
<tr>
<td></td>
<td>Press Exit to cancel</td>
</tr>
</tbody>
</table>

Confirmation Dialog
Editing projector settings

If the highlighted menu item contains a list of values to choose from, you can change the value by doing the following:

1. Highlight the menu item and press ENTER/OK.
2. In the list of values that opens, use the UP and DOWN arrow buttons to highlight a value, then press ENTER/OK again to select the highlighted value.

Using a slider to set a value

Some parameters open a slider. To set such a parameter:

1. Press the LEFT or RIGHT arrow button, or ENTER/OK. The arrow buttons will open the slider and adjust the value at the same time. ENTER/OK will open the slider without altering the initial value.
2. Use the LEFT and RIGHT arrow buttons to move the slider.
3. When ready, press EXIT to exit the slider and return to the menu, or press MENU to exit the slider without showing the menu again.
Editing numeric values

Some parameters take numeric values without using sliders - for example, color matching values or IP addresses.

1. Use the **UP** and **DOWN** arrow buttons to highlight the row containing the numeric field you wish to edit.
2. Press **ENTER/OK** to enter edit mode. A numeric field in edit mode is white text on blue background.
3. In edit mode:
 - Use the **UP** arrow button to increase the numeric value.
 - Use the **DOWN** arrow button to decrease the numeric value.
4. Use the **LEFT** and **RIGHT** arrow buttons to edit the next or previous numeric fields within the same row.
5. Once ready, press **ENTER/OK** to exit edit mode.
Using the projector

Main Menu

- **Input**
 Press ENTER/OK to open the list of available inputs. Use the UP and DOWN arrow buttons to select an input from the list, then press ENTER/OK to confirm your choice. Press EXIT to return to the main menu.

- **Test Pattern**
 Choose from: White, Black, Red, Green, Blue, Checkerboard, Crosshatch, V Burst, H Burst, Color Bar, Off. Use the LEFT and RIGHT arrow buttons to switch between values.

- **Lens, Image, Color, Geometry, Edge Blend, 3D, Laser, Setup, Network.**
 Press ENTER/OK to open these menus and access various settings.

Press the DOWN arrow at the bottom of the page to access additional menus:

- **PIP, Information.**
 Press ENTER/OK to open these menus and access various settings.

Press the UP arrow to return to the previous page.

Notes

- See Signal inputs on page 28 for information about the available inputs and connections.
- Selecting a test pattern hides the OSD. Press EXIT to hide the test pattern, and then press MENU to show the OSD.
Lens menu

- **Lens Lock**
 When this feature is **On**, all other Lens menu items are disabled.

- **Lens Control**
 Opens a sub-menu, see below.

- **Center Lens**
 Centers the lens.

- **Lens Memory**
 Opens a sub-menu, see next page.

Lens control

Lens Control settings operate in **Zoom/Focus Adjustment** and **Shift Adjustment** mode. Press ENTER/OK to switch between modes.

When in **Zoom/Focus Adjustment** mode:

- Use the **UP** and **DOWN** arrow buttons to adjust **Zoom**.
- Use the **LEFT** and **RIGHT** arrow buttons to adjust **Focus**.

When in **Shift Adjustment** mode, use the arrow buttons to adjust **Shift**.
Lens memory

This menu allows you to load, save and delete up to ten lens presets, containing horizontal and vertical shift adjustment information.

Use **Clear Memory** to delete a memory preset if you need to save a new combination of lens settings in its place. Overwriting a saved memory preset is not possible.

Lens Memory

- **Load Memory**
- **Save Memory**
- **Clear Memory**

Lens Load Memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>OK</th>
<th>Memory</th>
<th>OK</th>
<th>Memory</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory 1</td>
<td></td>
<td>Memory 2</td>
<td></td>
<td>Memory 3</td>
<td></td>
</tr>
<tr>
<td>Memory 2</td>
<td></td>
<td>Memory 3</td>
<td></td>
<td>Memory 4</td>
<td></td>
</tr>
<tr>
<td>Memory 3</td>
<td></td>
<td>Memory 4</td>
<td></td>
<td>Memory 5</td>
<td></td>
</tr>
<tr>
<td>Memory 4</td>
<td></td>
<td>Memory 5</td>
<td></td>
<td>Memory 6</td>
<td></td>
</tr>
<tr>
<td>Memory 5</td>
<td></td>
<td>Memory 6</td>
<td></td>
<td>Memory 7</td>
<td></td>
</tr>
<tr>
<td>Memory 6</td>
<td></td>
<td>Memory 7</td>
<td></td>
<td>Memory 8</td>
<td></td>
</tr>
<tr>
<td>Memory 7</td>
<td></td>
<td>Memory 8</td>
<td></td>
<td>Memory 9</td>
<td></td>
</tr>
<tr>
<td>Memory 8</td>
<td></td>
<td>Memory 9</td>
<td></td>
<td>Memory 10</td>
<td></td>
</tr>
<tr>
<td>Memory 9</td>
<td></td>
<td>Memory 10</td>
<td></td>
<td>Memory 1</td>
<td></td>
</tr>
</tbody>
</table>

Lens Save Memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>OK</th>
<th>Memory</th>
<th>OK</th>
<th>Memory</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory 1</td>
<td></td>
<td>Memory 2</td>
<td></td>
<td>Memory 3</td>
<td></td>
</tr>
<tr>
<td>Memory 2</td>
<td></td>
<td>Memory 3</td>
<td></td>
<td>Memory 4</td>
<td></td>
</tr>
<tr>
<td>Memory 3</td>
<td></td>
<td>Memory 4</td>
<td></td>
<td>Memory 5</td>
<td></td>
</tr>
<tr>
<td>Memory 4</td>
<td></td>
<td>Memory 5</td>
<td></td>
<td>Memory 6</td>
<td></td>
</tr>
<tr>
<td>Memory 5</td>
<td></td>
<td>Memory 6</td>
<td></td>
<td>Memory 7</td>
<td></td>
</tr>
<tr>
<td>Memory 6</td>
<td></td>
<td>Memory 7</td>
<td></td>
<td>Memory 8</td>
<td></td>
</tr>
<tr>
<td>Memory 7</td>
<td></td>
<td>Memory 8</td>
<td></td>
<td>Memory 9</td>
<td></td>
</tr>
<tr>
<td>Memory 8</td>
<td></td>
<td>Memory 9</td>
<td></td>
<td>Memory 10</td>
<td></td>
</tr>
<tr>
<td>Memory 9</td>
<td></td>
<td>Memory 10</td>
<td></td>
<td>Memory 1</td>
<td></td>
</tr>
</tbody>
</table>

Lens Clear Memory

<table>
<thead>
<tr>
<th>Memory</th>
<th>OK</th>
<th>Memory</th>
<th>OK</th>
<th>Memory</th>
<th>OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory 1</td>
<td></td>
<td>Memory 2</td>
<td></td>
<td>Memory 3</td>
<td></td>
</tr>
<tr>
<td>Memory 2</td>
<td></td>
<td>Memory 3</td>
<td></td>
<td>Memory 4</td>
<td></td>
</tr>
<tr>
<td>Memory 3</td>
<td></td>
<td>Memory 4</td>
<td></td>
<td>Memory 5</td>
<td></td>
</tr>
<tr>
<td>Memory 4</td>
<td></td>
<td>Memory 5</td>
<td></td>
<td>Memory 6</td>
<td></td>
</tr>
<tr>
<td>Memory 5</td>
<td></td>
<td>Memory 6</td>
<td></td>
<td>Memory 7</td>
<td></td>
</tr>
<tr>
<td>Memory 6</td>
<td></td>
<td>Memory 7</td>
<td></td>
<td>Memory 8</td>
<td></td>
</tr>
<tr>
<td>Memory 7</td>
<td></td>
<td>Memory 8</td>
<td></td>
<td>Memory 9</td>
<td></td>
</tr>
<tr>
<td>Memory 8</td>
<td></td>
<td>Memory 9</td>
<td></td>
<td>Memory 10</td>
<td></td>
</tr>
<tr>
<td>Memory 9</td>
<td></td>
<td>Memory 10</td>
<td></td>
<td>Memory 1</td>
<td></td>
</tr>
</tbody>
</table>
Image

- **Picture Mode**
 Choose from **High Bright**, **Presentation** and **Video**.
 Use a different setting depending on the type of input source.
 Press **ENTER/SELECT** to open the list.
 Use the **UP** and **DOWN** arrow buttons to select a picture mode from the list, then press **ENTER/OK** to confirm your choice.
 Press **EXIT** to return to the main menu.

- **Dynamic Black**
 Set to On to allow for increased contrast in darker scenes by modulating the light source.

- **Light Off Timer**
 When **Dynamic Black** is On, the **Light Off Timer** will define if laser light source will turn off after a period of time has passed. The options are: **Disable**, **0.5**, **1.0**, **1.5**, **2.0**, **3.0**, **4.0** seconds.

- **Gamma**
 Choose a de-gamma curve from **1.0**, **1.8**, **2.0**, **2.2**, **2.35**, **2.5**, **S-Curve**, and **DICOM**.
 Used correctly, the **Gamma** setting can improve contrast while maintaining good details for blacks and whites.
 If excess ambient light washes out the image and it is difficult to see details in dark areas, lower the **Gamma** setting to compensate. This improves contrast while maintaining good details for blacks.
 Conversely, if the image is washed out and unnatural, with excessive detail in black areas, increase the setting.
 S-Curve is an enhanced mid-tone gamma.
 DICOM is a simulated DICOM display, which can be used for training applications.

- **Brightness, Contrast, Saturation, Hue, Sharpness**
 Highlight the setting you wish to edit, and then press **ENTER/OK**, or the **LEFT** or **RIGHT** arrow button to open the slider.
 Use the **LEFT** and **RIGHT** arrow buttons to adjust the slider.
 Press **EXIT** to close the slider and return to the menu, or **MENU** to close the slider and return to the projected image.

- **Noise Reduction**
 Choose a level of noise reduction from **Off**, **Low**, **Middle** and **High**.

- **Freeze**
 Freezes the current frame.

- **Resync**
 Press **ENTER/OK** to force the projector to resynchronise with the current input.
Color

Color Space
In most cases, the Auto setting determines the correct colorspace to use. If it does not, you can choose a specific colorspace:
Choose from Auto, YPbPr, YCbCr, RGB PC and RGB Video.
Color Mode

The projector can work in the following color modes:

- ColorMax
- Manual Color Matching
- Color Temperature
- Gains and Lifts
- 3 Color Matching
- 7 Color Matching

ColorMax

1. Set Color Mode to ColorMax.
2. Navigate to the ColorMax setting.
3. Choose from HDTV, Peak, User 1, User 2, 3 Color Matching and 7 Color Matching. User 1 and User 2 are user-defined color gamuts set via the Setup > ColorMax menu.

Notes

Only one color mode can be selected at a time. Settings used by the other color modes are disabled.

See Setup on page 77 for further information about setting up the User 1 and User 2 color gamuts.
Manual Color Matching

2. Open the Manual Color Matching submenu.

Here you can do the following:

- Switch Auto Test Pattern On and Off.
- Adjust Hue, Saturation and Gain settings for each individual color to improve the color balance of the projected image.
- Adjust white balance RGB values.
- Reset all values.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Hue</td>
<td>Red</td>
</tr>
<tr>
<td>Saturation</td>
<td>Green</td>
</tr>
<tr>
<td>Gain</td>
<td>Blue</td>
</tr>
<tr>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>
Color matching parameters explained

The levels of hue, saturation and gain in the Manual Color Matching menu change the color values in the following ways:

1. **Hue** Specifies the position of each color (red, yellow, green, cyan, blue and magenta) relative to its neighboring colors.
2. **Saturation** Specifies the level of white in each color (i.e. how “pale” each color is).
3. **Gain** Controls the amount of light that goes into each color, i.e. the lowest gain would produce black.
Color Temperature

1. Set Color Mode to Color Temperature.
2. Navigate to the Color Temperature setting. Choose a value from 3200K (warmer) to 9300K (cooler) or Native (no correction).

Gains and Lifts

1. Set Color Mode to Gains and Lifts.
2. Open the Gains and Lifts submenu.

Lifts allow you to adjust black levels of individual colors, while gains adjust the bright part of the scale.

Set the sliders as required.
3 Color Matching

1. Set Color Mode to 3 Color Matching.
2. Open the 3 Color Matching submenu.

Here you can do the following:

- Switch Auto Test Pattern On and Off.
- Adjust the RGB settings for each individual color to alter its hue.
- Adjust the Gain value of the white balance.
- Reset all values.

In 3 color and 7 color matching, the contribution of red, green and blue can be adjusted for each color. This allows the tint of each color to be matched across multiple projectors.
7 Color Matching

1. Set Color Mode to 7 Color Matching.
2. Open the 7 Color Matching submenu.

Here you can do the following:

- Switch Auto Test Pattern On and Off.
- Adjust the RGB settings for each individual color to alter its hue.
- Adjust the Gain value of the white balance.
- Reset all values.

<table>
<thead>
<tr>
<th>7 Color Matching - Red</th>
<th>7 Color Matching - White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red 100</td>
<td>Gain 100</td>
</tr>
<tr>
<td>Green 100</td>
<td></td>
</tr>
<tr>
<td>Blue 100</td>
<td></td>
</tr>
</tbody>
</table>

Notes

In 3 color and 7 color matching, the contribution of red, green, and blue can be adjusted for each color. This allows the tint of each color to be matched across multiple projectors.
Geometry

This menu allows you to compensate for image distortions caused by an unusual projection angle or irregular screen surface.

Aspect Ratio

This feature defines the aspect ratio of the source. Use the **Setup > Screen Setting** to define the screen aspect ratio.

If you choose a preset aspect ratio from here, it will give you the best fit for your selection.

Choose from:

- 5:4
- 4:3
- 16:10
- 16:9
- 1.88
- 2.35
- TheaterScope
- Source
- Unscaled

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect Ratio</td>
<td>Source</td>
</tr>
<tr>
<td>Digital Zoom</td>
<td>Off</td>
</tr>
<tr>
<td>Overscan</td>
<td>Off</td>
</tr>
<tr>
<td>Blanking</td>
<td>Off</td>
</tr>
<tr>
<td>Warping Mode</td>
<td>Keystone</td>
</tr>
<tr>
<td>Warping Grids</td>
<td>Off</td>
</tr>
<tr>
<td>Custom Masking</td>
<td>Off</td>
</tr>
</tbody>
</table>
Theaterscope setting

The **TheaterScope** setting is used in combination with an anamorphic lens to restore 2.35:1 images packed into a 16:9 frame. Such images are projected with black lines at the top and bottom of the 16:9 screen to make up for the difference in aspect ratios.

Without an anamorphic lens and without the TheaterScope setting applied, a 16:9 source containing a 2.35:1 image looks like this:

If we change the setting to TheaterScope, the black lines will disappear but the image will stretch vertically to reach the top and bottom of the DMD™:

An anamorphic lens will stretch the image horizontally, restoring the original 2.35 ratio:
Digital Zoom

Digital zooming enlarges a section of the image, while the area outside the enlarged section is cropped out to preserve the overall image size.

- **Digital Zoom** defines the level of zoom that needs to be applied. If **Digital Zoom** is set to 0, then the other settings in the menu will be disabled.
- **Digital Pan** and **Digital Scan** specify the area that is being enlarged:
 - **Digital Pan** adjusts the horizontal coordinates.
 - **Digital Scan** adjusts the vertical coordinates.

The **Reset** command restores the default **Digital Zoom**, **Digital Pan** and **Digital Scan** values.

Notes

Digital Zoom is a temporary setting and not retained after an input change or power cycle.
Overscan

Use this setting to compensate for noisy or badly defined image edges.

Crop removes unwanted artifacts from the edges of your image by cropping the edges.

Zoom increases the size of the image to force the edges off-screen.

<table>
<thead>
<tr>
<th>Geometry</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect Ratio</td>
<td>Off</td>
</tr>
<tr>
<td>Digital Zoom</td>
<td>Off</td>
</tr>
<tr>
<td>Overscan</td>
<td>Off</td>
</tr>
<tr>
<td>Blanking</td>
<td>Off</td>
</tr>
<tr>
<td>Warping Mode</td>
<td>Crop</td>
</tr>
<tr>
<td>Keystone</td>
<td>Zoom</td>
</tr>
<tr>
<td>4 Corners</td>
<td></td>
</tr>
<tr>
<td>Rotation</td>
<td></td>
</tr>
<tr>
<td>Pincushion / Barrel</td>
<td></td>
</tr>
<tr>
<td>Arc</td>
<td></td>
</tr>
<tr>
<td>Custom Warp</td>
<td></td>
</tr>
</tbody>
</table>

--

Notes
Blanking

Use this feature to:

- fit an odd-sized screen;
- cut off timecode dots in the top line of a picture;
- cut off subtitles, etc.

Select the edge you wish to blank and use the **LEFT** and **RIGHT** arrow buttons to determine the amount of correction.

Use the **Reset** command to restore blanked edges.
Keystone

Use this setting to compensate for any distortion caused by the projector being in a different horizontal or vertical plane to the screen.

Keystone

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>H Keystone</td>
<td>0</td>
</tr>
<tr>
<td>V Keystone</td>
<td>0</td>
</tr>
<tr>
<td>Rotation</td>
<td>0</td>
</tr>
<tr>
<td>Reset</td>
<td></td>
</tr>
</tbody>
</table>

Notes

Max rotation in Keystone is reduced from normal rotation.
Keystone example

The projector is positioned at an angle

The resulting image is distorted

The image is corrected when Keystone is applied

Notes
Keystone settings

1. **Projector to the left** The projector is positioned to the left of the screen. To correct, apply a positive Horizontal Keystone value using the RIGHT arrow button.

2. **Projector to the right** The projector is positioned to the right of the screen. To correct, apply a negative Horizontal Keystone value using the LEFT arrow button.

3. **Projector high** The projector is positioned above the screen at a downward angle. To correct, apply a negative Vertical Keystone value using the DOWN arrow button.

4. **Projector low** The projector is positioned below the screen at an upward angle. To correct, apply a positive Vertical Keystone value using the UP arrow button.

5. **Projector straight** The projector is directly opposite the screen at a right angle both horizontally and vertically. No correction is needed.
4 Corners

For each corner, apply horizontal and/or vertical correction as necessary to restore the rectangular shape of the image.

<table>
<thead>
<tr>
<th>4 Corners</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Left Corner</td>
</tr>
<tr>
<td>Top Right Corner</td>
</tr>
<tr>
<td>Bottom Left Corner</td>
</tr>
<tr>
<td>Bottom Right Corner</td>
</tr>
<tr>
<td>Reset</td>
</tr>
</tbody>
</table>

Notes

Corner corrections provide a simple setup for awkward installations and irregular shaped screens that may distort the image. To apply a similar (but less flexible) correction, while preserving the original aspect ratio of the image, use the Keystone menu.
Top right corner example

In this illustration, the top right corner requires both horizontal and vertical correction.
Rotation

Use this feature for example to correct a mounting error causing the image not to be level with the screen.
Rotation example

1. **DMD™ area**
 The DMD™ is not rotated. It still covers the area that would be occupied by the image without correction.

2. **Rotated image**
 The image is smaller than the surrounding DMD™ area. It is scaled in order to remain within the DMD™ area.

3. **Angle of rotation**
 Each step on the slider is 0.25° of rotation. In this example the angle is 5°, therefore Rotation value is 20.
Pincushion / Barrel

Pincushion or barrel distortions are the result of poor or incorrect tensioning of the screen or using a surface that is not flat.

Use the Pincushion / Barrel control to compensate electronically for such distortions.

You can also use this menu to make simple panoramic screen corrections without using external processors.

Pincushion / Barrel example

The illustration shows pincushion and barrel correction applied both horizontally and vertically, in equal measures.
Arc

This feature is similar to **Pincushion / Barrel** but allows you to apply curvature to each edge of the image independently so you can have any combination of corrections.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arc</td>
<td></td>
</tr>
<tr>
<td>Top</td>
<td>0</td>
</tr>
<tr>
<td>Bottom</td>
<td>0</td>
</tr>
<tr>
<td>Left</td>
<td>0</td>
</tr>
<tr>
<td>Right</td>
<td>0</td>
</tr>
<tr>
<td>Reset</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes

Please note that a positive Arc value on any edge will reduce the image size as the projector needs to maintain the aspect ratio.

A negative Arc value will not affect the overall image size.
Custom Warp

This feature permits selection of predefined User warp maps. Use the Projector Controller PC application to create the custom warp maps.

Custom warp maps provide non-linear curvature correction for curved or spherical screens and other irregular shaped surfaces such as building mapping.
Warping Grids
Switch warping grids on to overlay a grid onto the warped image.

Custom Masking
This feature permits selection of predefined masks. Use the Projector Controller PC application to create the custom masks.
Use this feature to apply a custom mask to an area of the image. Select from Off, User 1 and User 2.
Edge Blend

Use this menu to blend together images from an array of two or more projectors. The feature feathers the light output of the projector within the edges that overlap with other projectors in the array: as a result, the overlapping edges are evenly lit and easily blend in with the rest of the image.

- **Edge Blend**
 Enable and disable Edge Blend

- **Align Pattern**
 Add markers to the image showing the edges of the blend area and making the overlaps more visible to help adjust the physical position of the projectors in the array.

- **Blend Start**
 Determine the start point of the blended regions. top, bottom, left right

- **Blend Width**
 Determine the width of the blended regions.

- **Black Level Uplift**
 Adjust black levels to compensate if the blended regions appear brighter than the rest of the image.

- **Reset**
 Reset all Edge Blend settings to their factory default values.

Notes

- When **Edge Blend** is set to Off, all other edge blend settings are disabled.

- The picture in the blend region needs to be delivered to all overlapping projectors, which may require a special setup of the source.
Blend Start

Use the blend start options to deactivate pixels at the edge of the image and set the start point for the blended region. Use the **LEFT** and **RIGHT** arrow buttons to set the start point of the blended regions:

1. Top
2. Bottom
3. Left
4. Right
Blend Width

Use the **LEFT** and **RIGHT** arrow buttons to set the width of the blended regions:

1. Top
2. Bottom
3. Left
4. Right
Black Level Uplift

Black in the blended regions appears less dark than in the rest of the image. To compensate for this, use this menu to raise the black levels of the rest of the image:

- Set All to the required amount of black level correction. This will apply equal correction to the black levels of all colors.
- If necessary, use the individual color sliders (Red, Green and Blue) for fine adjustment.

You may experience artifacts at the edges where the blended region of one projector overlaps the pond of mirrors of its neighbor. In the example below, the blended image comes from two projectors, 1 and 2.

Both images have black level uplift applied; as a result, artifacts 3 and 4 have emerged at the edges where the black level uplift region of one projector overlaps the pond of mirrors of the other.

To remove the artifacts, you need to slightly reduce the size of the black level uplift region of each projector so it does not overlap the pond of mirrors of the other projector.

- Depending on your array, use Top, Bottom, Left and/or Right to reduce the black level uplift size. In the example below, use the Right slider of the projector on the left 1 to remove the artifact on the right 4, and the Left slider of the projector on the right 2 to remove the artifact on the left 3.
3D

Use this menu to enable, disable and set up 3D input, as follows:

- **3D Format**
 - Off, Auto, Side-by-side, Top and Bottom, Dual Pipe and Frame Sequential.
 - Frame Sequential is for sources where Left and Right eye images are delivered as alternate frames from a single input. Dual Pipe is for sources where Left and Right eye are delivered on separate inputs.

- **DLP Link**
 - Off / On.
 - DLP Link On emits a sync pulse for the 3D glasses via the projected image. DLP Link Off will send the sync pulse to the sync out connector to use with an external third party emitter.

- **Eye Swap**
 - Normal and Reverse.
 - (set to Reverse if the left- and right-eye images are displayed in the wrong order)

- **Dark Time**
 - 0.65 ms, 1.3 ms and 1.95 ms.
 - Set to reduce the effect of banding and image overlapping when viewed through 3D glasses.

3D Sync

- **Offset**
 - Use the LEFT and RIGHT arrow buttons to compensate for image overlapping (ghosting) when viewed through 3D glasses.

- **Reference**
 - External and Internal.
 - Select the source of the 3D sync. Internal is referenced to the incoming video. External is for Frame Sequential 3D sources and is supplied by the graphics card or player.

3D Settings

<table>
<thead>
<tr>
<th>3D Format</th>
<th>Auto</th>
</tr>
</thead>
<tbody>
<tr>
<td>DLP Link</td>
<td>Off</td>
</tr>
<tr>
<td>Eye Swap</td>
<td>Normal</td>
</tr>
<tr>
<td>Dark Time</td>
<td>1.95 ms</td>
</tr>
<tr>
<td>3D Sync</td>
<td>100</td>
</tr>
<tr>
<td>Reference</td>
<td>Internal</td>
</tr>
</tbody>
</table>

Notes

- If **3D Format** is set to Off, all other 3D settings will be unavailable.
- See 3D connections on page 30 for more information about supported 3D formats.
- The following settings are not available when 3D is on:
 - Image > Picture Mode, Dynamic Black, Freeze.
 - Geometry > Digital Zoom, Overscan.
 - PIP > all settings.
- Also: See 3D types on the facing page and See Some 3D settings explained on page 74.
- See 3D formats on page 105 for 3D resolutions and frame rates.
3D types

To display a 3D image if is first necessary to select the 3D format. This can either be Frame Sequential or Dual Pipe. These formats are described below:

- **Dual Pipe (LEFT and RIGHT)**: The left and right eye images are delivered on two separate HDMI links, which the projector will interleave for 3D display.

- **Frame Sequential**: For sequential 3D, an external sync is required to identify left and right frames. If no sync is available from the sequential source, the projector will generate an output sync, but it may then be necessary to manually set the Eye Swap each time the player is started.

Dark Time and **Sync Offset** need to be set only once, to optimize the image for the glasses in use.
Some 3D settings explained

Dark Time

Banding can be caused if the image is displayed before each eye of the 3D switching glasses or ZScreen is not fully open. **Dark Time** allows you to minimize this effect.

Eye Swap

The outgoing 3D frames are in pairs - the dominant frame being presented first. You can determine which frame should be the dominant one.

By convention the default setting is **Left**.

Notes

In order to achieve maximum light output and a smooth grayscale, whilst eliminating ghosting, the following procedure is recommended:

1. Set **Dark Time** to a value appropriate to the glasses or ZScreen, say 1.3 ms or 1.95 ms.
2. Adjust **Sync Offset** time to eliminate ghosting and achieve a smooth grayscale.
3. Repeat steps 1 and 2 until the best result is obtained.
Sync Offset

The sync signal from the 3D server will be in phase with the frames generated by its graphics card. However, to compensate for switching delays in the glasses or ZScreen, Sync Offset is used to adjust the sync output signal sent to the ZScreen or 3D glasses to minimise overlapping (ghosting in the image when viewed through the 3D glasses.)
Laser

- **Power Mode**
 - **Eco** will automatically set the laser power to 80%.
 - **Normal** will set the power to 100%.
 - Set to **Custom** if you wish to adjust the power manually.

- **Power Level**
 This setting is only available if **Power Mode** is set to **Custom**.
 Choose a value between 20 and 100, ranging from 20% to 100% laser power.

- **Constant Brightness**
 Once a **Custom Power Mode** has been set, then Constant Brightness can be turned **ON**.
 This setting will maintain the brightness until the maximum laser power has been reached. The lower the power level the longer it will be maintained.

<table>
<thead>
<tr>
<th>Laser</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Mode</td>
<td>Normal</td>
</tr>
<tr>
<td>Power Level</td>
<td>— — —</td>
</tr>
<tr>
<td>Constant Brightness</td>
<td>Off</td>
</tr>
</tbody>
</table>
Setup

- Orientation
 Choose from Front Tabletop, Front Ceiling, Rear Tabletop, Rear Ceiling and Auto-front.

- High Altitude
 Choose from On, Auto and Quiet.

- Standby Mode
 Choose from SuperECO, ECO and Normal.
 SuperECO uses minimal power and disables power ON via LAN.
 ECO uses a low power setting but enables power ON via Ethernet port only.
 Normal enables power ON via both HDBase-T/LAN and Ethernet ports.

- Screen Setting
 Choose from 16:10, 16:9 and 4:3.

- ColorMax Setting
 Set up user-defined color gamut values.

- Power on/off Management
 Access the submenu to set up automatic projector power on and power off.

- Clock Adjust
 Access the submenu to set current date and local time.

- Startup Logo
 Set this to On if you want the DP logo to show when the projector is first switched on.

- Blank Screen
 Choose from Logo, Black, Blue and White.

- Auto Source
 If this setting is On, the projector will automatically search for an active input source.

Highlight the DOWN arrow at the bottom of the page and press ENTER/OK to navigate to the second Setup menu page.
• **Trigger-1** and **Trigger-2**
 Choose from 5:4, 4:3, 16:10, 16:9, 1.88, 2.35, TheaterScope, Source, Unscaled or RS232 to determine what will cause each trigger output to activate.

• **Infrared Remote**
 Set to **Off** if you wish to disable the remote control.

• **IR Code**
 The projector and the remote control need a matching IR code: a two-digit number between 00 and 99. The default IR code is 00. This is also a master code, which, if assigned to a remote, will work regardless of the value assigned to the projector.

 - **To assign an IR code for the projector**: Select IR code. Use the UP and DOWN arrow buttons to change the values.
 - **To assign an IR code for the remote**: press and hold the ADDR button on the remote until the On indicator starts flashing. Release the ADDR button and while the indicator is still flashing, enter a two digit address using the numeric input buttons. The indicator will flash three times quickly to confirm the change.

• **IR Code Reset**
 Use this command to unassign an IR code from the projector. This will revert the **IR Code** value to 00.

 To unassign an IR code from the remote control, press and hold ALT and ADDR simultaneously until the On indicator flashes to confirm the change.

• **OSD Settings**
 Access this submenu to adjust the appearance and position of the on-screen display.

• **Memory**
 Access this submenu to save up to four presets containing custom combinations of image settings, or to recall a saved preset.

• **Image Latency**
 Select **Fast** for improved latency.
 Select **Normal** when image corruption occurs. Image corruption (frame tearing) may occur when a high level of warping is applied to the image and fast latency is selected. See Geometry on page 52 for information about image warping.

• **Electronic Shutter**
 Set to **On** to turn the laser off when the PIC Mute activated.
 Set to **Off** to project a black image when PIC Mute is activated.

• **EDID Mode**
 Access this submenu to set the frame rate and display resolution for each input type.

Highlight the **UP** arrow at the top of the page and press **ENTER/OK** to go back to the first **Setup** menu page.
ColorMax

ColorMax permits seven point color matching of red, green, blue, yellow, cyan, magenta and white.

You can enter your own gamut values here, or edit values you have imported using the **Projector Controller** software.

Defining your own colorspace with individual x and y coordinates for each color enables you to match not only the whites but each individual color as well.

Highlight the submenu you wish to open and press **ENTER/OK** to confirm your choice.

Measured data/ target data

1. **Use the UP and DOWN arrow buttons to highlight a color, then use the LEFT and RIGHT arrow buttons to navigate to the x or y coordinate.**

2. **Use the UP and DOWN arrow buttons to increase and decrease the value, respectively.**

3. **Exit edit mode:**
 - press **ENTER/OK**, if you want to save the edited values.
 - press **EXIT**, if you do not wish to save the edited values.

4. **If necessary, highlight another color and repeat the procedure.**

Measured Data

- **Red**: x: 0.658 y: 0.339
- **Green**: x: 0.315 y: 0.662
- **Blue**: x: 0.146 y: 0.043
- **White**: x: 0.276 y: 0.283

Target Data - User 1

- **Red**: x: 0.640 y: 0.390
- **Green**: x: 0.300 y: 0.600
- **Blue**: x: 0.150 y: 0.060
- **Yellow**: x: 0.419 y: 0.505
- **Cyan**: x: 0.225 y: 0.329
- **Magenta**: x: 0.321 y: 0.154
- **White**: x: 0.285 y: 0.302
Power on/off Management

Power on/off

Auto Power Off
Set this to On if you want the projector to go into STANDBY mode when no input source is detected for 20 minutes.

Auto Power On
Set this to On if you want the projector to start up immediately when the mains is connected. Set this to Off if you want the projector to go into STANDBY mode when the mains is connected. In this case, the projector will not start up until the POWER button is pressed on the control panel or the ON button is pressed on the remote control.

Scheduled on-off
Access this submenu to create a weekly schedule for automatic on and off times:

1. Set a schedule:
 - Use the UP and DOWN arrow buttons to highlight a row, then press ENTER/OK to enable edit mode.
 - Within a row, navigate with the LEFT and RIGHT arrow buttons. Set values with the UP and DOWN arrow buttons.
 - To exit edit mode, press ENTER/OK. Alternatively, press EXIT if you don’t want the changes to take effect. Move to another row using the UP and DOWN arrow buttons.

2. To enable the schedule, set Schedule to On.
Clock Adjust

Use this menu to set date (in \texttt{dd:MM:yyyy} format), time (in \texttt{HH:mm} format) and time zone. The date and time set here will affect any schedule created within the \textbf{Power On/Off} menu.

\begin{table}[h]
\begin{tabular}{|l|l|}
\hline
\textbf{Clock Adjust} & \\
\hline
Date (dd:MM:yyyy) & 30:11:2017 \\
Time (HH:mm) & 16:00 \\
Time Zone & UTC 00 \\
\hline
\end{tabular}
\end{table}

OSD Settings

- \textbf{Language} sets the OSD language.
- \textbf{Menu Position} determines where the OSD should appear on the screen when activated.
- \textbf{Menu Transparency} sets OSD transparency between 0\% (no transparency), 25\%, 50\% and 75\%.
- \textbf{Time Out} determines how long the OSD should remain on screen if no buttons are pressed. Choose Always On to disable this feature.
- \textbf{Message Box} determines whether projector status messages should appear on the screen.
- \textbf{Menu Rotation} Choose from \textbf{Off}, \textbf{Clockwise} and \textbf{Anticlockwise}. Select a rotation option to rotate the OSD menu when the projector is displaying in portrait.

\begin{table}[h]
\begin{tabular}{|l|l|}
\hline
\textbf{OSD Settings} & \\
\hline
Language & English \\
Menu Position & Center \\
Menu Transparency & 0 \\
Time Out & 30 Seconds \\
Message Box & On \\
Menu Rotation & Off \\
\hline
\end{tabular}
\end{table}
Memory

The current image settings can be saved as a preset, which you can recall later. The default settings can be recalled at any time as well.

Up to four custom presets can be stored for each input.

The following settings are saved in a preset:

- From the Image menu — Dynamic Black, Gamma, Brightness, Contrast, Saturation, Hue, Sharpness, Noise Reduction
- From the Color menu — Color Space, Color Mode, ColorMax, Color Temperature, Red Lift, Green Lift, Blue Lift, Red Gain, Green Gain, Blue Gain
- From the Geometry menu — Aspect Ratio, Overscan

To recall a saved preset:

- Select Recall Memory and press ENTER/OK, then select a preset from Preset A to Preset D. Select Default to load factory default values.

To save a preset:

- Select Save Settings and press ENTER/OK, then choose from Preset A, Preset B, Preset C and Preset D.

EDID Mode

Each signal input type is available in the menu. Select the appropriate frame rate and display resolution for each input.

<table>
<thead>
<tr>
<th>EDID Mode</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HDMI 1</td>
<td>4K/60 HDR</td>
</tr>
<tr>
<td>HDMI 2</td>
<td>4K/60 HDR</td>
</tr>
<tr>
<td>HDMI 3</td>
<td>1920x1200xp60</td>
</tr>
<tr>
<td>HDMI 4</td>
<td>1920x1200xp60</td>
</tr>
<tr>
<td>DisplayPort</td>
<td>4K/60</td>
</tr>
<tr>
<td>HDBaseT</td>
<td>4K/60</td>
</tr>
</tbody>
</table>

Notes

Presets from one input cannot be applied to another input.

See on page 1 for information about the parameters that can be saved in a memory preset.
Network

- **Network Mode**
 Choose between **Projector Control** and **Service**.

- **DHCP, IP, Subnet Mask, Gateway, DNS**
 Set **DHCP** to **On** if the IP address is to be assigned by a DHCP server, or **Off** if it is to be set here.
 If **DHCP** is **On**, it will not be possible to edit IP Address, Subnet Mask, Gateway or DNS.
 If **DHCP** is set to **Off**, edit IP Address, Subnet Mask, Gateway and DNS as required.

- **MAC** This field is read-only.

- **AMX (Device Discovery)** Switch on or off

Network

<table>
<thead>
<tr>
<th>Network Mode</th>
<th>Projector Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP</td>
<td>Off</td>
</tr>
<tr>
<td>IP</td>
<td>192.168.000.10</td>
</tr>
<tr>
<td>Subnet Mask</td>
<td>255.255.255.000</td>
</tr>
<tr>
<td>Gateway</td>
<td>000.000.000.000</td>
</tr>
<tr>
<td>DNS</td>
<td>000.000.000.000</td>
</tr>
<tr>
<td>MAC</td>
<td>00:18:28:2d:12:06</td>
</tr>
<tr>
<td>AMX (Device Discovery)</td>
<td>Off</td>
</tr>
</tbody>
</table>
PIP

- **PIP**
 - Turn PIP on and off.

- **Source**
 - Select an input source for the PIP image. Any combinations are possible between main and PIP input source, as long as one of the inputs is either DisplayPort or 3G-SDI.

- **Position**
 - Set the location of the PIP image on the screen. Choose from Top-Left, Top-Right, Bottom-Left, Bottom-Right and PBP.

```
<table>
<thead>
<tr>
<th></th>
<th>PIP</th>
<th>Source</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Off</td>
<td>HDMI1</td>
<td>Top-Left</td>
</tr>
</tbody>
</table>
```
Information

This menu gives information about software and hardware configuration, input source and laser operating times. It also allows you to restore the factory default settings.

<table>
<thead>
<tr>
<th>Information</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Model Name</td>
<td>M-Vision Laser 21K</td>
</tr>
<tr>
<td>Serial Number</td>
<td>X000XXXXX0000</td>
</tr>
<tr>
<td>Software Version 1</td>
<td>MD03-SE10-FE09</td>
</tr>
<tr>
<td>Software Version 2</td>
<td>STEP_D08-24-17-3120</td>
</tr>
<tr>
<td>Software Version 3</td>
<td>2.0.16.0-P503</td>
</tr>
<tr>
<td>Active / PIP Source</td>
<td>HDMI 1</td>
</tr>
<tr>
<td>Signal Format</td>
<td></td>
</tr>
<tr>
<td>Laser Hours</td>
<td>2</td>
</tr>
<tr>
<td>System Status</td>
<td></td>
</tr>
<tr>
<td>Thermal Status</td>
<td></td>
</tr>
<tr>
<td>Factory Reset</td>
<td></td>
</tr>
</tbody>
</table>

Signal Format

<table>
<thead>
<tr>
<th>Signal Format</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Active Source</td>
<td></td>
</tr>
<tr>
<td>Timing</td>
<td>1080p/60Hz</td>
</tr>
<tr>
<td>H Refresh</td>
<td>67.500 KHz</td>
</tr>
<tr>
<td>V Refresh</td>
<td>60.00 Hz</td>
</tr>
<tr>
<td>Pixel Clock</td>
<td>148.500 MHz</td>
</tr>
<tr>
<td>PIP Source</td>
<td></td>
</tr>
<tr>
<td>Timing</td>
<td>576p/50Hz</td>
</tr>
<tr>
<td>H Refresh</td>
<td>31.250 KHz</td>
</tr>
<tr>
<td>V Refresh</td>
<td>50.00 Hz</td>
</tr>
<tr>
<td>Pixel Clock</td>
<td>27.0 MHz</td>
</tr>
</tbody>
</table>
System Status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmospheric Pressure</td>
<td>98988 Pa (116m)</td>
</tr>
<tr>
<td>AC Voltage</td>
<td>160V - 264V</td>
</tr>
<tr>
<td>Ceiling Mode</td>
<td>0</td>
</tr>
<tr>
<td>Tilt Angle</td>
<td>4 deg</td>
</tr>
<tr>
<td>Portrait Angle</td>
<td>0 deg</td>
</tr>
<tr>
<td>Altitude Mode</td>
<td>Auto</td>
</tr>
<tr>
<td>Laser Power</td>
<td>100%</td>
</tr>
<tr>
<td>License Key</td>
<td>License Pass, Timeout, Not Expired</td>
</tr>
<tr>
<td>Constant Brightness</td>
<td>Off</td>
</tr>
</tbody>
</table>

Thermal Status

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Temp.</td>
<td>Ti=24 / Ta=34 °C</td>
</tr>
<tr>
<td>DMD Temp.</td>
<td>Tc=38 °C</td>
</tr>
<tr>
<td>LD 1-2 Temp.</td>
<td>B8=56 / B15=52 °C</td>
</tr>
<tr>
<td>Fan 1-4 Speed</td>
<td>1399/1402/1391/1686</td>
</tr>
<tr>
<td>Fan 5-8 Speed</td>
<td>1410/1200/1205/1686</td>
</tr>
<tr>
<td>Fan 9-12 Speed</td>
<td>1211/1407/1410/1691</td>
</tr>
<tr>
<td>Fan 13-16 Speed</td>
<td>1709/3005/3007/2495</td>
</tr>
<tr>
<td>Fan 17-20 Speed</td>
<td>2986/2984/4984/4493</td>
</tr>
<tr>
<td>Fan 20-23 Speed</td>
<td>3020/3015/2517</td>
</tr>
<tr>
<td>Water Pump Speed</td>
<td>3506/3026</td>
</tr>
</tbody>
</table>
Factory Reset

To restore the factory default settings:

1. Navigate to Factory Reset and press ENTER/OK.
2. When prompted, press ENTER/OK to confirm your choice, or press EXIT to cancel.

Notes

Factory reset does not reset the Network settings, or High Altitude mode
Served web pages

The served web pages allow you to control the projector remotely via LAN.

The default IP address is **192.168.0.100**.
Choosing a lens

A number of lenses are available. Which lens you choose depends on the screen size, image aspect ratio, throw distance and light output.

The following table shows all available lenses in order of their throw ratios:

<table>
<thead>
<tr>
<th>Throw ratios</th>
<th>Focus range</th>
<th>Lens shift</th>
<th>Part No</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84 - 1.03 : 1</td>
<td>1.5 m - 10 m</td>
<td>V: 0.37 (U) 0.37 (D)</td>
<td>114-313</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H: 0.12 (L) 0.12 (R)</td>
<td></td>
</tr>
<tr>
<td>1.20 - 1.56 : 1 zoom</td>
<td>1 m - 8 m</td>
<td>V: 0.5 (U) 0.5 (D) frame</td>
<td>117-573</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H: 0.15 (L) 0.15 (R) frame</td>
<td></td>
</tr>
<tr>
<td>1.50 - 2.00 : 1 zoom</td>
<td>2 m - 12 m</td>
<td>V: 0.5 (U) 0.3 (D) frame</td>
<td>118-578</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H: 0.15 (L) 0.15 (R) frame</td>
<td></td>
</tr>
<tr>
<td>2.00 - 4.00 : 1 zoom</td>
<td>2.5 m - 15 m</td>
<td>V: 0.5 (U) 0.3 (D) frame</td>
<td>118-588</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H: 0.15 (L) 0.15 (R) frame</td>
<td></td>
</tr>
<tr>
<td>4.00 - 7.00 : 1 zoom</td>
<td>4 m - 42 m</td>
<td>V: 0.5 (U) 0.3 (D) frame</td>
<td>117-463</td>
</tr>
<tr>
<td></td>
<td></td>
<td>H: 0.15 (L) 0.15 (R) frame</td>
<td></td>
</tr>
</tbody>
</table>

The 1.50 - 2.00 : 1 zoom lens has a feature that permits focus correction for curved screens. The front ring of the lens is a manual control that provides focus curvature adjustment to correct for the different focal distances between center and corner.

To choose a lens, calculate the throw ratio required. Allow a tolerance of +/- 3% in the throw ratio calculation.
Basic calculation

Identify the required lens by calculating the **throw ratio**.

A throw ratio is the ratio of the throw distance 1 to the screen width 2:

Throw Ratio = *Throw Distance/ScreenWidth*

1. Use the formula above to obtain the required throw ratio.
2. Allow a tolerance of +/- 3% in the throw ratio calculation and match the throw ratio with a lens from the table below:

<table>
<thead>
<tr>
<th>Throw ratios</th>
<th>Focus range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84 - 1.03 : 1</td>
<td>1.5 m - 10 m</td>
</tr>
<tr>
<td>1.20 - 1.56 : 1</td>
<td>1 m - 8 m</td>
</tr>
<tr>
<td>1.50 - 2.00 : 1</td>
<td>2 m - 12 m</td>
</tr>
<tr>
<td>2.00 - 4.00 : 1</td>
<td>2.5 m - 15 m</td>
</tr>
<tr>
<td>4.00 - 7.00 : 1</td>
<td>4 m - 42 m</td>
</tr>
</tbody>
</table>

3. Ensure the required throw distance is within the range covered by the lens.

Notes

The basic calculation on this page does not take into consideration DMD™ and image size, which could affect the throw ratio. See Full lens calculation on page 93 for a more complex and realistic calculation.

When calculating the throw ratio, be sure to use identical measurement units for both the throw distance and the screen width.

See Choosing a lens on the previous page for information about individual lens part numbers.
Basic calculation example

1. Calculate the throw ratio using the formula.
 Your screen is 4.5m wide and you wish to place the projector approximately 11m from the screen. The throw ratio will then be
 \[\frac{11}{4.5} = 2.44 \]

2. Match the result with the lens table.
 The lens matching a throw ratio of 2.44 is the 2.00 - 4.00 : 1 zoom lens.

3. Check whether the lens covers the required throw distance.
 The focus range quoted for the 2.00 - 4.00 : 1 zoom lens is 2.5 - 15m. The required distance of 11m is within the range.

INFORMATION YOU NEED FOR THIS CALCULATION

The throw ratio formula:

\[\text{Throw Ratio} = \frac{\text{Throw Distance}}{\text{Screen Width}} \]

Allow a tolerance of +/- 3% in the throw ratio calculation.

The lens table:

<table>
<thead>
<tr>
<th>Throw ratios</th>
<th>Focus range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84 - 1.03 : 1</td>
<td>1.5 m - 10 m</td>
</tr>
<tr>
<td>1.20 - 1.56 : 1 zoom</td>
<td>1 m - 8 m</td>
</tr>
<tr>
<td>1.50 - 2.00 : 1 zoom</td>
<td>2 m - 12 m</td>
</tr>
<tr>
<td>2.00 - 4.00 : 1 zoom</td>
<td>2.5 m - 15 m</td>
</tr>
<tr>
<td>4.00 - 7.00 : 1 zoom</td>
<td>4 m - 42 m</td>
</tr>
</tbody>
</table>

Notes

The basic calculation on this page does not take into consideration DMD™ and image size, which could affect the throw ratio. See Full lens calculation on the facing page for a more complex and realistic calculation.

See Choosing a lens on page 90 for information about individual lens part numbers.
Full lens calculation

Introducing TRC

The choice of lens will affect the image size and will address discrepancies between the DMD™ resolution and the source.

When an image fills the height of the DMD™ but not the width, it uses less than 100% of the DMD™ surface. A lens chosen using the basic formula may produce an image that is considerably smaller than the actual screen.

To compensate for loss of screen space in such situations, you need to increase the throw ratio using a Throw Ratio Correction (TRC).

Example

Fig. 1 illustrates a 4:3 image within a 16:9 display

When a 16:9 projector is used for a 4:3 image, the image does not fill the width of the DMD™, creating a pillarboxing effect - blank spaces to the left and right.

Fig. 2 shows the same image projected on a 4:3 screen using a standard lens (chosen with the basic calculation).

The DMD™ accurately fills the width of the screen; however, the pillarboxing is now part of the projected image and is transferred to the screen.

The DMD™ does not fill the height of the screen, which has caused letterboxing - further blank spaces at the top and bottom of the screen.

The image is now surrounded by blank space, which can be removed if the throw ratio is increased.

Fig. 3 shows the image projected on the same screen with a lens chosen using TRC. The increased throw ratio has allowed the 4:3 image to fill the 4:3 screen seamlessly.

Notes

TRC can only be applied if greater than 1. If TRC is 1 or less, disregard it and calculate the throw ratio using the basic formula.
Calculating TRC

To calculate TRC, use the following formula:

\[TRC = \frac{1.6(DMD^\text{ AspectRatio})}{\text{SourceAspectRatio}}. \]

TRC table

Alternatively, you can save time by referencing the following table, which shows the TRC value for some popular image formats:

<table>
<thead>
<tr>
<th>Format</th>
<th>Resolution</th>
<th>TRC Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.35:1 (Scope)</td>
<td>1920 x 817 pixels</td>
<td>TRC < 1, not used</td>
</tr>
<tr>
<td>1.85:1 (Flat)</td>
<td>1920 x 1037 pixels</td>
<td>TRC < 1, not used</td>
</tr>
<tr>
<td>1.78:1 (16:9)</td>
<td>1920 x 1080 pixels</td>
<td>TRC < 1, not used</td>
</tr>
<tr>
<td>1.6:1 (16:10)</td>
<td>1920 x 1200 pixels</td>
<td>TRC < 1, not used (native aspect ratio)</td>
</tr>
<tr>
<td>1.33:1 (4:3)</td>
<td>1596 x 1200 pixels</td>
<td>TRC = 1.2</td>
</tr>
<tr>
<td>1.25:1 (5:4)</td>
<td>1500 x 1200 pixels</td>
<td>TRC = 1.28</td>
</tr>
</tbody>
</table>

Calculating the throw ratio with TRC

1. For TRC > 1, amend the basic throw ratio formula as follows:

\[\text{ThrowRatio} = \frac{\text{ThrowDistance} \times \text{ScreenWidth} \times \text{TRC}}{1} \]

Allow a tolerance of +/- 3% in the throw ratio calculation.

2. Once a throw ratio is established, identify the matching lens from the table:

<table>
<thead>
<tr>
<th>Throw ratios</th>
<th>Focus range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84 - 1.03 : 1</td>
<td>1.5 m - 10 m</td>
</tr>
<tr>
<td>1.20 - 1.56 : 1 zoom</td>
<td>1 m - 8 m</td>
</tr>
<tr>
<td>1.50 - 2.00 : 1 zoom</td>
<td>2 m - 12 m</td>
</tr>
<tr>
<td>2.00 - 4.00 : 1 zoom</td>
<td>2.5 m - 15 m</td>
</tr>
<tr>
<td>4.00 - 7.00 : 1 zoom</td>
<td>4 m - 42 m</td>
</tr>
</tbody>
</table>

3. Ensure the required throw distance is within the range of the matching lens.
Full lens calculation example

Your screen is 4.5m wide; you wish to place the projector approximately 11m from the screen. The source is 4:3.

1. Calculate TRC as follows:
 \[TRC = \frac{1.6}{1.33} = 1.2. \]
2. Calculate the throw ratio:
 \[\text{Throw ratio} = \frac{11}{4.5 \times 1.2} = 2.04 \]
3. Allow a tolerance of +/- 3% in the throw ratio calculation and find a match in the lens table.
 The table shows that the matching lens is the 2.00 - 4.00 : 1 zoom lens.
4. Check whether the lens covers the required throw distance.
 The focus range quoted for the 2.00 - 4.00 : 1 zoom lens is 2.5m - 15m. The required distance of 11m is within the range.

INFORMATION YOU NEED FOR THESE CALCULATIONS

The TRC formula

\[TRC = \frac{DMD\text{™ AspectRatio}}{Source\text{ AspectRatio}} \]

The TRC table (to use instead of the formula)

<table>
<thead>
<tr>
<th>Aspect Ratio</th>
<th>TRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.35:1 (Scope)</td>
<td>TRC < 1, not used</td>
</tr>
<tr>
<td>1.85:1 (Flat)</td>
<td>TRC < 1, not used</td>
</tr>
<tr>
<td>1.78:1 (16:9)</td>
<td>TRC < 1, not used</td>
</tr>
<tr>
<td>1.6:1 (16:10)</td>
<td>TRC < 1, not used (native aspect ratio)</td>
</tr>
<tr>
<td>1.33:1 (4:3)</td>
<td>TRC = 1.2</td>
</tr>
<tr>
<td>1.25:1 (5:4)</td>
<td>TRC = 1.28</td>
</tr>
</tbody>
</table>

The throw ratio formula

\[\text{Throw Ratio} = \frac{\text{Throw Distance}}{\text{Screen Width}} \times TRC \]

Allow a tolerance of +/- 3% in the throw ratio calculation.

The lens table:

<table>
<thead>
<tr>
<th>Throw ratios</th>
<th>Focus range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.84 - 1.03 : 1</td>
<td>1.5 m - 10 m</td>
</tr>
<tr>
<td>1.20 - 1.56 : 1 zoom</td>
<td>1 m - 8 m</td>
</tr>
<tr>
<td>1.50 - 2.00 : 1 zoom</td>
<td>2 m - 12 m</td>
</tr>
<tr>
<td>2.00 - 4.00 : 1 zoom</td>
<td>2.5 m - 15 m</td>
</tr>
<tr>
<td>4.00 - 7.00 : 1 zoom</td>
<td>4 m - 42 m</td>
</tr>
</tbody>
</table>
Screen requirements

Fitting the image to the display

If the source image supplied to the projector is smaller than the WUXGA resolution, the image will not fill the display. The following examples show how a number of common formats may be displayed, depending on your DMD™ resolution.

WUXGA images displayed full width

WUXGA images displayed with a height of 1200 pixels
WUXGA images displayed full height

Diagonal screen sizes

Screen sizes are sometimes specified by their diagonal size (D). When dealing with large screens and projection distances at different aspect ratios, it is more convenient to measure screen width (W) and height (H).

The example calculations below show how to convert diagonal sizes into width and height, at various aspect ratios.

2.35:1 (Scope)
W = D x 0.92 H = D x 0.39

1.85:1
W = D x 0.88 H = D x 0.47

16:9 = 1.78:1
W = D x 0.87 H = D x 0.49

16:10 = 1.6:1 (native aspect ratio for WUXGA projectors)
W = D x 0.85 H = D x 0.53
Positioning the image

The normal position for the projector is at the centre of the screen. However, you can set the projector above or below the centre, or to one side, and adjust the image using the Lens shift feature (known as rising and falling front) to maintain a geometrically correct image.

- **Shifting the lens up (rising front)**
- **Centred Lens**
- **Shifting the lens down (falling front)**

Whenever possible, position the projector so that the lens is centered for the highest quality image.

Notes

See Lens control on page 42 for more information on shifting the lens.

Whenever possible, position the projector so that the lens is centered for the highest quality image.
Any single adjustment outside the ranges specified on the following page may result in an unacceptable level of distortion, particularly at the corners of the image, due to the image passing through the periphery of the lens optics.

If the lens is to be shifted in two directions combined, the maximum range without distortion will be somewhat less, as can be seen in the illustrations.

Notes

See Lens control on page 42 for more information on shifting the lens.
Aspect ratios explained

The appearance of a projected image on the screen depends on a combination of the following:

- The display resolution is **WUXGA** with a 1920 x 1200 resolution, corresponding to an aspect ratio of 16:10
- The aspect ratio of the input signal: usually **4:3, 16:9 or 16:10**
- The value of the Aspect Ratio setting of the projector:
 - **16:9, 4:3, 16:10** and **5:4** stretch the image to the selected aspect ratio. **16:9** leaves black bars at the top and bottom of the screen (letterboxing effect); **4:3** and **5:4** leave black bars at the sides of the screen (pillarboxing).
 - **TheaterScope** is a special setting used in combination with an anamorphic lens, an optional accessory. It removes letterboxing from a 2.35:1 source packed into a 16:9 frame.
 - **Source** shows the image with its original aspect ratio, if this does not match the native aspect ratio of the DMD™, then the image will be scaled to either fit the full width or height of the display.

Aspect ratios examples

1. Unused screen areas

Source: 4:3

![Aspect Ratio: Source / 4:3](image1)

![Aspect Ratio 16:10](image2)

Notes
Source: 16:9

Aspect Ratio: Source / 16:9

Source: 16:10 (native)

Aspect Ratio: Source / 16:10
Aspect ratio example: TheatreScope

The TheaterScope setting is used in combination with an anamorphic lens to restore 2.35:1 images packed into a 16:9 frame. Such images are projected with black lines at the top and bottom of the 16:9 screen to make up for the difference in aspect ratios.

Without an anamorphic lens and without the TheaterScope setting applied, a 16:9 source containing a 2.35:1 image looks like this:

If we change the setting to TheaterScope, the black lines will disappear but the image will stretch vertically to reach the top and bottom of the DMD™:

An anamorphic lens will stretch the image horizontally, restoring the original 2.35 ratio:
Appendix A: supported signal input modes

2D formats

<table>
<thead>
<tr>
<th>Signal Format</th>
<th>Resolution</th>
<th>H Freq. (kHz)</th>
<th>Frame Rate (Hz)</th>
<th>PCLK (MHz)</th>
<th>Display Port</th>
<th>HDMI / HD-BaseT</th>
<th>HD/SDI/3G</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>640x480</td>
<td>31.469</td>
<td>59.94</td>
<td>25.175</td>
<td></td>
<td></td>
<td>RGB 8-bit</td>
<td>YUV 10-bit</td>
<td>VESA DMT</td>
</tr>
<tr>
<td>640x480</td>
<td>37.500</td>
<td>74.99</td>
<td>31.500</td>
<td></td>
<td>✓</td>
<td>YUV 10-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>640x480</td>
<td>43.269</td>
<td>85</td>
<td>36.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>800x600</td>
<td>37.879</td>
<td>60.32</td>
<td>40.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>800x600</td>
<td>46.875</td>
<td>75</td>
<td>49.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>800x600</td>
<td>53.674</td>
<td>85.06</td>
<td>56.250</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>848x480</td>
<td>23.674</td>
<td>47.95</td>
<td>25.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA CVT</td>
</tr>
<tr>
<td>848x480</td>
<td>31.020</td>
<td>60</td>
<td>33.750</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1024x768</td>
<td>48.363</td>
<td>60</td>
<td>65.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1024x768</td>
<td>56.476</td>
<td>70.07</td>
<td>75.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1024x768</td>
<td>60.023</td>
<td>75</td>
<td>78.750</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1024x768</td>
<td>68.677</td>
<td>85</td>
<td>94.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1152x864</td>
<td>67.5</td>
<td>75</td>
<td>108.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280x720</td>
<td>35.531</td>
<td>47.95</td>
<td>57.987</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA GTF</td>
</tr>
<tr>
<td>1280 x 768</td>
<td>47.776</td>
<td>60</td>
<td>79.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280 x 768</td>
<td>60.289</td>
<td>74.89</td>
<td>102.250</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280 x 768</td>
<td>68.633</td>
<td>84.84</td>
<td>117.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280 x 800</td>
<td>49.702</td>
<td>60</td>
<td>83.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280 x 800</td>
<td>62.795</td>
<td>74.93</td>
<td>106.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280 x 960</td>
<td>60.000</td>
<td>60</td>
<td>108.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280 x 960</td>
<td>85.938</td>
<td>85</td>
<td>148.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280x1024</td>
<td>63.981</td>
<td>60.02</td>
<td>108.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280x1024</td>
<td>79.976</td>
<td>75.02</td>
<td>135.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1280x1024</td>
<td>91.146</td>
<td>85.02</td>
<td>157.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1366 x 768</td>
<td>47.712</td>
<td>60</td>
<td>85.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1400x1050</td>
<td>65.317</td>
<td>60</td>
<td>121.750</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1400x1050</td>
<td>82.278</td>
<td>74.87</td>
<td>156.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1440 x 900</td>
<td>55.935</td>
<td>59.89</td>
<td>106.500</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1440 x 900</td>
<td>70.635</td>
<td>74.98</td>
<td>136.750</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1600x900</td>
<td>55.92</td>
<td>60</td>
<td>119.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA GTF</td>
</tr>
<tr>
<td>1600x1200</td>
<td>75.000</td>
<td>60</td>
<td>162.000</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
<tr>
<td>1680x1050</td>
<td>65.290</td>
<td>60</td>
<td>146.250</td>
<td></td>
<td>✓</td>
<td>YUV 12-bit</td>
<td></td>
<td>VESA DMT</td>
</tr>
</tbody>
</table>

Notes
Appendix A: supported signal input modes

<table>
<thead>
<tr>
<th>Signal Format</th>
<th>Resolution</th>
<th>H Freq. (kHz)</th>
<th>Frame Rate (Hz)</th>
<th>PCLK (MHz)</th>
<th>Display Port</th>
<th>HDMI / HD-BaseT</th>
<th>HD/SDI/3G</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RGB 8-bit</td>
<td>YUV 10-bit</td>
<td>YUV 12-bit</td>
</tr>
<tr>
<td>PC</td>
<td>1920x1080</td>
<td>53.225</td>
<td>47.95</td>
<td>135.403</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>VESA CVT</td>
</tr>
<tr>
<td></td>
<td>1920x1200</td>
<td>61.816</td>
<td>50</td>
<td>158.250</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>VESA CVT</td>
</tr>
<tr>
<td></td>
<td>1920x1200</td>
<td>74.038</td>
<td>60</td>
<td>154.000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>VESA CVT</td>
</tr>
<tr>
<td></td>
<td>2048x1152</td>
<td>72.000</td>
<td>60</td>
<td>162.000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>VESA CVT</td>
</tr>
<tr>
<td></td>
<td>2560x1600</td>
<td>98.713</td>
<td>59.97</td>
<td>268.500</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>VESA CVT</td>
</tr>
<tr>
<td>Apple Mac</td>
<td>640x480</td>
<td>66.59</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Apple MAC</td>
</tr>
<tr>
<td></td>
<td>832x624</td>
<td>74.54</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Apple MAC</td>
</tr>
<tr>
<td></td>
<td>1024x768</td>
<td>60.241</td>
<td>74.93</td>
<td>80.000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Apple MAC</td>
</tr>
<tr>
<td></td>
<td>1152x870</td>
<td>68.861</td>
<td>75.06</td>
<td>100.000</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>Apple MAC</td>
</tr>
<tr>
<td>SDTV</td>
<td>480i</td>
<td>59.94</td>
<td></td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1440x480i</td>
<td>60</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1440x576i</td>
<td>50</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>576i</td>
<td>50</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDTV</td>
<td>480p</td>
<td>59.94</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>576p</td>
<td>50</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDTV</td>
<td>1035i</td>
<td>60</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080i</td>
<td>50</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080i</td>
<td>59.94</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080i</td>
<td>60</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>720p</td>
<td>50</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>720p</td>
<td>59.94</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>720p</td>
<td>60</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080p</td>
<td>23.98</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080p</td>
<td>24</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080p</td>
<td>25</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080p</td>
<td>29.97</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080p</td>
<td>30</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080p</td>
<td>50</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080p</td>
<td>59.94</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080p</td>
<td>60</td>
<td></td>
<td></td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PsF formats</td>
<td>1080sf</td>
<td>27</td>
<td>24</td>
<td>74.250</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080sf</td>
<td>28.125</td>
<td>25</td>
<td>74.250</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1080sf</td>
<td>33.75</td>
<td>30</td>
<td>74.250</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HD-SDI</td>
<td>720p24</td>
<td>18</td>
<td>24</td>
<td>74.250</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>720p25</td>
<td>18.75</td>
<td>25</td>
<td>74.250</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>720p30</td>
<td>22.5</td>
<td>30</td>
<td>74.250</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3D formats

<table>
<thead>
<tr>
<th>Standard</th>
<th>Resolution</th>
<th>V-Freq (Hz)</th>
<th>V-Total (Hz)</th>
<th>H Freq. (kHz)</th>
<th>HDMI 1/2 (*1)</th>
<th>Display Port (*2)</th>
<th>HB Dual-pipe HDMI (*3)</th>
<th>HB DisplayPort (*3)</th>
<th>Remarks</th>
<th>Output Frame Rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>720p50</td>
<td>Frame Packing</td>
<td>1280x720</td>
<td>50.00</td>
<td>1470</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
</tr>
<tr>
<td>720p59</td>
<td>Frame Packing</td>
<td>1280x720</td>
<td>59.94</td>
<td>1470</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
</tr>
<tr>
<td>720p60</td>
<td>Frame Packing</td>
<td>1280x720</td>
<td>60.00</td>
<td>1470</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
</tr>
<tr>
<td>720p50</td>
<td>Top-and-Bottom</td>
<td>1280x720</td>
<td>50.00</td>
<td>750</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>100</td>
</tr>
<tr>
<td>720p59</td>
<td>Top-and-Bottom</td>
<td>1280x720</td>
<td>59.94</td>
<td>750</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>720p60</td>
<td>Top-and-Bottom</td>
<td>1280x720</td>
<td>60.00</td>
<td>750</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p23</td>
<td>Frame Packing</td>
<td>1920x1080</td>
<td>23.98</td>
<td>2205</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*6</td>
<td>96</td>
</tr>
<tr>
<td>1080p24</td>
<td>Frame Packing</td>
<td>1920x1080</td>
<td>24.00</td>
<td>2205</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*6</td>
<td>96</td>
</tr>
<tr>
<td>1080i50</td>
<td>Side-by-Side (Half)</td>
<td>1920x1080</td>
<td>50.00</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>100</td>
</tr>
<tr>
<td>1080i59</td>
<td>Side-by-Side (Half)</td>
<td>1920x1080</td>
<td>59.94</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080i60</td>
<td>Side-by-Side (Half)</td>
<td>1920x1080</td>
<td>60.00</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p50</td>
<td>Side-by-Side (Half)</td>
<td>1920x1080</td>
<td>50.00</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>100</td>
</tr>
<tr>
<td>1080p59</td>
<td>Side-by-Side (Half)</td>
<td>1920x1080</td>
<td>59.94</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p60</td>
<td>Side-by-Side (Half)</td>
<td>1920x1080</td>
<td>60.00</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p50</td>
<td>Top-and-Bottom</td>
<td>1920x1080</td>
<td>50.00</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>100</td>
</tr>
<tr>
<td>1080p59</td>
<td>Top-and-Bottom</td>
<td>1920x1080</td>
<td>59.94</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p60</td>
<td>Top-and-Bottom</td>
<td>1920x1080</td>
<td>60.00</td>
<td>1125</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>100</td>
</tr>
</tbody>
</table>

Notes

Remarks:
*1: Based on IT6802 chip specification
*2: Based on IT6535 chip specification
*3: Disable PIP function in this situation
*4: 8-bit / color
*5: Frame drop at scaler and frame doubling at formatter
*6: Output display frame rate up to 96Hz for 24Hz 3D input
Appendix A: supported signal input modes

<table>
<thead>
<tr>
<th>Standard</th>
<th>Resolution</th>
<th>V-Freq (Hz)</th>
<th>V-Total (kHz)</th>
<th>H Freq. (kHz)</th>
<th>HDMI 1/2 (*1)</th>
<th>Display Port (*2)</th>
<th>HB Dual-pipe HDMI (*3)</th>
<th>HB DisplayPort (*3)</th>
<th>Remarks</th>
<th>Output Frame Rate (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1080p50</td>
<td>1920x1080</td>
<td>50.00</td>
<td>1125</td>
<td>56.25</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>100</td>
</tr>
<tr>
<td>1080p59</td>
<td>1920x1080</td>
<td>59.94</td>
<td>1125</td>
<td>67.43</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p60</td>
<td>1920x1080</td>
<td>60.00</td>
<td>1125</td>
<td>67.50</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p100</td>
<td>1920x1080</td>
<td>100.00</td>
<td>1125</td>
<td>112.50</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*4, *5</td>
<td>100</td>
</tr>
<tr>
<td>1080p120</td>
<td>1920x1080</td>
<td>120.00</td>
<td>1125</td>
<td>135.00</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*4, *5</td>
<td>120</td>
</tr>
<tr>
<td>WUXGA_100_RB</td>
<td>1920x1200</td>
<td>100.00</td>
<td>1258</td>
<td>125.72</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*4, *5</td>
<td>100</td>
</tr>
<tr>
<td>WUXGA_120_RB</td>
<td>1920x1200</td>
<td>120.00</td>
<td>1271</td>
<td>152.40</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
<td>*4, *5</td>
<td>120</td>
</tr>
<tr>
<td>1080p23</td>
<td>1920x1080</td>
<td>23.98</td>
<td>1125</td>
<td>26.97</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*6</td>
<td>96</td>
</tr>
<tr>
<td>1080p24</td>
<td>1920x1080</td>
<td>24.00</td>
<td>1125</td>
<td>27.00</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*6</td>
<td>96</td>
</tr>
<tr>
<td>1080p25</td>
<td>1920x1080</td>
<td>25.00</td>
<td>1125</td>
<td>28.13</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*5</td>
<td>100</td>
</tr>
<tr>
<td>1080p30</td>
<td>1920x1080</td>
<td>30.00</td>
<td>1125</td>
<td>33.75</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p50</td>
<td>1920x1080</td>
<td>50.00</td>
<td>1125</td>
<td>56.25</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*5</td>
<td>100</td>
</tr>
<tr>
<td>1080p59</td>
<td>1920x1080</td>
<td>59.94</td>
<td>1125</td>
<td>67.43</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>1080p60</td>
<td>1920x1080</td>
<td>60.00</td>
<td>1125</td>
<td>67.50</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
<tr>
<td>WUXGA_60_RB</td>
<td>1920x1200</td>
<td>60.00</td>
<td>1235</td>
<td>74.04</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
<td>*5</td>
<td>120</td>
</tr>
</tbody>
</table>
Appendix B: wiring details

Signal inputs and outputs

HDMI 1 and 2

19 way type A connector

1. TMDS Data 2+
2. TMDS Data 2 Shield
3. TMDS Data 2-
4. TMDS Data 1+
5. TMDS Data 1 Shield
6. TMDS Data 1-
7. TMDS Data 0+
8. TMDS Data 0 Shield
9. TMDS Data 0-
10. TMDS Clock+
11. TMDS Clock Shield
12. TMDS Clock-
13. CEC
14. not connected
15. SCL (DDC Clock)
16. SCA (DDC Data)
17. DDC/CEC Ground
18. +5 V Power
19. Hot Plug Detect

HDMI: pin view of panel connector
DisplayPort

DisplayPort 1.2

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ML_Lane 0 (p)</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
</tr>
<tr>
<td>3</td>
<td>ML_Lane 0 (n)</td>
</tr>
<tr>
<td>4</td>
<td>ML_Lane 1 (p)</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
</tr>
<tr>
<td>6</td>
<td>ML_Lane 1 (n)</td>
</tr>
<tr>
<td>7</td>
<td>ML_Lane 2 (p)</td>
</tr>
<tr>
<td>8</td>
<td>GND</td>
</tr>
<tr>
<td>9</td>
<td>ML_Lane 2 (n)</td>
</tr>
<tr>
<td>10</td>
<td>ML_Lane 3 (p)</td>
</tr>
<tr>
<td>11</td>
<td>GND</td>
</tr>
<tr>
<td>12</td>
<td>ML_Lane 3 (n)</td>
</tr>
<tr>
<td>13</td>
<td>CONFIG1</td>
</tr>
<tr>
<td>14</td>
<td>CONFIG2</td>
</tr>
<tr>
<td>15</td>
<td>AUX CH (p)</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
</tr>
<tr>
<td>17</td>
<td>AUX CH (n)</td>
</tr>
<tr>
<td>18</td>
<td>Hot Plug</td>
</tr>
<tr>
<td>19</td>
<td>Return</td>
</tr>
<tr>
<td>20</td>
<td>DP_PWR</td>
</tr>
</tbody>
</table>
3G-SDI in, 3G-SDI out
75 ohm BNC

HDBaseT input
RJ45 socket.

Notes
Control connections

LAN

RJ45 socket (Shared with HDBaseT)

RS232

9 way D-type connector

1. unused
2. Transmitted Data (TX)
3. Received Data (RX)
4. unused
5. Signal Ground
6. unused
7. unused
8. unused
9. unused

IR input

3.5 mm mini jack

Tip Signal
Ring Not connected
Sleeve Ground

Notes

Only one remote connection (RS232 or LAN) should be used at any one time.
Appendix C: glossary of terms

1

1080p
An HDTV resolution which corresponds to 1920 x 1080 pixels (a widescreen aspect ratio of 16:9).

3

3D active glasses
Wireless battery-powered glasses with LCD shutters. Synchronization information is communicated to the glasses by means of an infrared (IR) or radio frequency (RF) emitter which is connected to the Sync Out terminal on the projector. IR or RF pulses are transmitted by the emitter to signal when the left eye and right eye images are being displayed. The glasses incorporate a sensor which detects the emitter’s signal and synchronises the left and right eye shutters with the projected image.

3D passive glasses
Passive glasses do not require a power source to work. Light with left-hand polarisation can pass through the left lens and light with right hand polarisation can pass through the right-hand lens. These glasses are used in conjunction with another device which polarizes the image, such as a ZScreen.

A

Adjust lines
A pattern applied to the image where its edge is to be blended with another image. Adjust lines are used to position the projectors in the array during the edge blend process.

Anamorphic lens
A special lens which, when used with the TheaterScope aspect ratio, allows watching 2.35:1 content packed in a 16:9 source.

Aperture
The opening of the lens that determines the angle through which light travels to come into focus.

Aspect ratio
The proportional relationship between the width and the height of the projected image. It is represented by two numbers separated by a colon, indicating the ratio of image width and height respectively: for example, 16:9 or 2.35:1. Not to be confused with resolution.
Blanking (projection)

The ability to intentionally turn off, that is, set to black, areas around the edges of the projected image. It is sometimes referred to as “curtains” since it can be used to blank an area of image that literally falls on the curtains at the side of the screen in a movie theater. Usually no image resizing or geometric correction takes place and the “blanked” part of the image is lost. Not to be confused with horizontal and vertical blanking (video signal).

Blanking (video signal)

The section of the video signal where there is no active video data. Not to be confused with blanking (projection).

Blend region

The area of the image that is to overlap with another image in an edge blend setup. Sometimes called overlapping region.

Brightness (electronic control)

A control which adds a fixed intensity value to every pixel in the display, moving the entire range of displayed intensities up or down, and is used to set the black point in the image (see Contrast). In Component Video signals, brightness is the same as luminance.

Brightness (optical)

Describes how ‘bright’ an image that is projected onto a screen appears to an observer.

C

Also known as ‘C’, this is the component, or pair of components, of a Component Video signal which describes color difference information.

Chrominance

Also known as ‘C’, this is the component, or pair of components, of a Component Video signal which describes color difference information.

Color difference

In Component Video signals, the difference between specified colors and the luminance component. Color difference is zero for monochrome images.

Color gamut

The spectrum of color available to be displayed.

Color temperature

The position along the black body curve on the chromaticity diagram, normally quoted in Kelvin. It takes into account the preset values for color balance in the service set-up to take up the variations in the prism. The projector allows you to adjust this temperature (i.e. adjust the picture color temperature).

Component video

A three-wire or four-wire video interface that carries the signal split into its basic RGB components or luminance (brightness) and two-color difference signals (YUV) and synchronization signals.
Contrast (electronic control)
The adjustment of the white point of the image without affecting the black point. This increases the intensity range of the displayed image.

Contrast (optical)
The intensity difference between the darkest and lightest areas of the screen.

Cr, Cb
Color difference signals used with ‘Y’ for digital Component Video inputs. They provide information about the signal color. Not to be confused with Pr, Pb.

Crop
Remove part of the projected image. Alternatively, fit an image into a frame with a different aspect ratio by removing part of the image. The image is resized so that either its length or its width equals the length or width of the frame, while the other dimension has moved outside the frame; the excess area is then cut out.

D

<table>
<thead>
<tr>
<th>Dark time</th>
<th>The time inserted between frames when using 3D active glasses, to avoid ghosting caused by switching time between left and right eye.</th>
</tr>
</thead>
<tbody>
<tr>
<td>DDC (Display Data Channel)</td>
<td>A communications link between the source and projector. DDC is used on the HDMI, DVI and VGA inputs. The link is used by the source to read the EDID stored in the projector.</td>
</tr>
<tr>
<td>Deinterlacing</td>
<td>The process of converting interlaced video signals into progressive ones.</td>
</tr>
<tr>
<td>DHCP (Dynamic Host Configuration Protocol)</td>
<td>A network protocol that is used to configure network devices so that they can communicate on an IP network, for example by allocating an IP address.</td>
</tr>
<tr>
<td>DMD™ (Digital Micromirror Device™)</td>
<td>The optical tool that transforms the electronic signal from the input source into an optical image projected on the screen. The DMD™ of a projector has a fixed resolution, which affects the aspect ratio of the projected image. A Digital Micromirror Device™ (DMD™) consists of moving microscopic mirrors. Each mirror, which acts as a pixel, is suspended between two posts by a thin torsion hinge. It can be tilted to produce either a bright or dark pixel.</td>
</tr>
</tbody>
</table>

E

| Edge blend | A method of creating a combined image by blending the adjoining edges of two or more individual images. |
Edge tear
An artifact observed in interlaced video where the screen appears to be split horizontally. Edge tears appear when the video feed is out of sync with the refresh rate of the display device.

EDID (Extended Display Identification Data)
Information stored in the projector that can be read by the source. EDID is used on the HDMI, DVI and VGA inputs, allowing the source to automatically configure to the optimum display settings.

EDTV (Enhanced Definition Television)
A progressive digital television system with a lower resolution than HDTV.

F

Field
In interlaced video, a part of the image frame that is scanned separately. A field is a collection of either all the odd lines or all the even lines within the frame.

Frame
One of the many still images displayed in a sequence to create a moving picture. A frame is made of horizontal lines of pixels. For example, a 1920x1080 frame consists of 1080 lines, each containing 1920 pixels. In analog video frames are scanned one at a time (progressive scanning) or split into fields for each field to be scanned separately (interlaced video).

Frame rate
The number of frames shown per second (fps). In TV and video, a frame rate is the rate at which the display device scans the screen to “draw” the frame.

Frame rate multiplication
To stop low frame rate 3D images from flickering, frame rate multiplication can be used, which increases the displayed frame rate by two or three times

G

Gamma
A nonlinear operation used to code and decode luminance. It originates from the Cathode Ray Tube technology used in legacy television sets.

Ghosting
An artifact in 3D image viewing. Ghosting occurs when an image intended for one eye is partially seen by the other eye. Ghosting can be removed by optimizing the dark time and sync delay.
Appendix C: glossary of terms

H

HDCP (High-bandwidth Digital Content Protection)
An encryption scheme used to protect video content.

HDTV (High Definition Television)
A television system with a higher resolution than SDTV and EDTV. It can be transmitted in various formats, notably 1080p and 720p.

Hertz (Hz)
Cycles per second.

Horizontal Scan Rate
The rate at which the lines of the incoming signal are refreshed. The rate is set by the horizontal synchronization from the source and measured in Hertz.

Hs + Vs
Horizontal and vertical synchronization.

Hue
The graduation (red/green balance) of color (applicable to NTSC).

I

Interlacing
A method of updating the image. The screen is divided in two fields, one containing every odd horizontal line, the other one containing the even lines. The fields are then alternately updated. In analog TV interlacing was commonly used as a way of doubling the refresh rate without consuming extra bandwidth.

Interleaving
The alternation between left and right eye images when displaying 3D.

L

LED (Light Emitting Diode)
An electronic component that emits light.

Letterboxing
Black margins at the top and bottom of the image. Letterboxing appears when a wider image is packed into a narrower frame without changing the original aspect ratio.
Lumen
A photometric unit of radiant power. For projectors, it is normally used to specify the total amount of emitted visible light.

Luminance
Also known as ‘Y’, this is the part of a Component Video signal which affects the brightness, i.e. the black and white part.

Noise
Electrical interference displayed on the screen.

NTSC (National Television Standards Committee)
The United States standard for television - 525 lines transmitted at 60 interlaced fields per second

OSD (on-screen display)
The projector menus allowing you to adjust various settings.

Overlapping region
The area of the image that is to overlap with another image in an edge blend setup. Sometimes called overlapping region.

PAL (Phase Alternate Line)
The television system used in the UK, Australia and other countries - 625 lines transmitted at 50 interlaced fields per second.

Pillarboxing
Black margins at the left and right of the image. Pillarboxing appears when a narrower image is packed into a wider frame without changing the aspect ratio.

Pixel
Short for Picture Element. The most basic unit of an image. Pixels are arranged in lines and columns. Each pixel corresponds to a micromirror within the DMD™; resolutions reflect the number of pixels per line by the number of lines. For example, a 1080p projector contains 1080 lines, each consisting of 1920 pixels.

Pond of mirrors
Area around the periphery of the DMD™ containing inactive mirrors. The pond of mirrors may cause artifacts, for example during the edge blending process.
Pr, Pb
Color difference signals used with ‘Y’ for analog Component Video inputs. They provide information about the signal color. Not to be confused with Cr, Cb.

Primary colors
Three colors any two of which cannot be mixed to produce the third. In additive color television systems the primary colors are red, green and blue.

Progressive scanning
A method of updating the image in which the lines of each frame are drawn in a sequence, without interlacing.

Pulldown
The process of converting a 24 fps film footage to a video frame rate (25 fps for PAL/SECAM, 30 fps for NTSC) by adding extra frames. DP projectors automatically carry out reverse pulldown whenever possible.

R

Resolution
The number of pixels in an image, usually represented by the number of pixels per line and the number of lines (for example, 1920 x 1200).

RGB (Red, Green and Blue)
An uncompressed Component Video standard.

S

Saturation
The amount of color in an image.

Scope
An aspect ratio of 2.35:1.

SDTV (Standard Definition Television)
An interlaced television system with a lower resolution than HDTV. For PAL and SECAM signals, the resolution is 576i; for NTSC it is 480i.

SECAM (Sequential Color with Memory)
The television system used in France, Russia and some other countries - 625 lines transmitted at 50 interlaced fields per second.

Smooth picture
A feature that can display a higher resolution source than the native resolution of the projector without loosing any pixel data.

SX+
A display resolution of 1400 x 1050 pixels with a 4:3 screen aspect ratio. (Shortened from SXGA+, stands for Super Extended Graphics Array Plus.)
Synchronization
A timing signal used to coordinate an action.

Test pattern
A still image specially prepared for testing a projection system. It may contain various combinations of colors, lines and geometric shapes.

TheaterScope
An aspect ratio used in conjunction with a special anamorphic lens to display 2.35:1 images packed into a 16:9 frame.

Throw distance
The distance between the screen and the projector.

Throw ratio
The ratio of the throw distance to the screen width.

TRC (Throw ratio correction)
A special number used in calculating throw distances and throw ratios when the image does not fill the width of the DMD™. TRC is the ratio of the DMD™ aspect ratio to the image source aspect ratio: TRC = DMD™ aspect ratio / Source aspect ratio TRC is only used in calculations if it is greater than 1.

UXGA
A display resolution of 1600 x 1200 pixels with a 4:3 screen aspect ratio. (Stands for Ultra Extended Graphics Array.)

Vertical Scan Rate
The rate at which the frames of the incoming signal are refreshed. The rate is set by the vertical synchronization from the source and measured in Hertz.

Vignetting
Optical cropping of the image caused by the components in the projection lens. This can happen if too much offset is applied when positioning the image using the lens mount.

Vista
An aspect ratio of 1.66:1.
W

WUXGA
A display resolution of 1920 x 1200 pixels with a 16:10 screen aspect ratio. (Stands for Widescreen Ultra Extended Graphics Array.)

Y

Y
This is the luminance input (brightness) from a Component Video signal.

YUV
Color difference signals used with ‘Y’ for analog Component Video inputs. They provide information about the signal color. Not to be confused with Cr, Cb.

Z

ZScreen
A special kind of light modulator which polarizes the projected image for 3D viewing. It normally requires that images are projected onto a silver screen. The ZScreen is placed between the projector lens and screen. It changes the polarization of the projected light and switches between left- and right-handed circularly polarized light at the field rate.